rtdetr-r50-cppe5-finetune

This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 9.7524
  • Map: 0.5298
  • Map 50: 0.7903
  • Map 75: 0.5632
  • Map Small: 0.5092
  • Map Medium: 0.4212
  • Map Large: 0.6655
  • Mar 1: 0.4001
  • Mar 10: 0.6526
  • Mar 100: 0.711
  • Mar Small: 0.6038
  • Mar Medium: 0.5835
  • Mar Large: 0.8378
  • Map Coverall: 0.6271
  • Mar 100 Coverall: 0.8308
  • Map Face Shield: 0.4839
  • Mar 100 Face Shield: 0.7706
  • Map Gloves: 0.5775
  • Mar 100 Gloves: 0.6492
  • Map Goggles: 0.425
  • Mar 100 Goggles: 0.6103
  • Map Mask: 0.5354
  • Mar 100 Mask: 0.6941

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Coverall Mar 100 Coverall Map Face Shield Mar 100 Face Shield Map Gloves Mar 100 Gloves Map Goggles Mar 100 Goggles Map Mask Mar 100 Mask
No log 1.0 107 216.6647 0.0037 0.0089 0.0022 0.0032 0.0183 0.014 0.0242 0.1046 0.1966 0.0405 0.1831 0.4092 0.0056 0.2649 0.001 0.1962 0.0021 0.0719 0.0008 0.2215 0.0091 0.2284
No log 2.0 214 96.4364 0.0294 0.0559 0.0257 0.0169 0.0297 0.0299 0.0707 0.1835 0.298 0.0948 0.2203 0.4591 0.0888 0.5527 0.001 0.3203 0.021 0.1259 0.0014 0.2154 0.0346 0.2756
No log 3.0 321 28.5504 0.1576 0.294 0.1448 0.0752 0.0925 0.2629 0.1621 0.3534 0.4661 0.347 0.3964 0.6546 0.4399 0.6518 0.0021 0.3797 0.1282 0.3866 0.0045 0.4 0.2132 0.5124
No log 4.0 428 17.1997 0.2324 0.408 0.2295 0.1228 0.1816 0.3288 0.2317 0.4133 0.5 0.3527 0.4438 0.6543 0.5101 0.6396 0.0093 0.4671 0.1827 0.4513 0.1553 0.4062 0.3045 0.5356
117.1144 5.0 535 14.8812 0.2495 0.4498 0.2479 0.1261 0.1962 0.4086 0.253 0.4388 0.5189 0.3485 0.4683 0.7111 0.5078 0.6752 0.0291 0.5013 0.2265 0.4491 0.1715 0.4246 0.3129 0.5444
117.1144 6.0 642 13.5348 0.2572 0.4698 0.2541 0.1377 0.1905 0.424 0.2532 0.4315 0.4895 0.314 0.4481 0.6649 0.5166 0.6716 0.026 0.4873 0.2391 0.3754 0.1866 0.3754 0.3178 0.5378
117.1144 7.0 749 12.7545 0.2812 0.5035 0.2612 0.1618 0.2143 0.4653 0.2595 0.4568 0.496 0.3394 0.4438 0.6648 0.5152 0.6815 0.0918 0.4949 0.2504 0.3759 0.208 0.3954 0.3405 0.5324
117.1144 8.0 856 12.5330 0.2909 0.5328 0.2687 0.1568 0.2262 0.4868 0.2831 0.4625 0.5035 0.3209 0.4428 0.686 0.5059 0.6838 0.1762 0.5038 0.2528 0.3978 0.1905 0.4062 0.3289 0.5258
117.1144 9.0 963 12.2873 0.3023 0.5355 0.2927 0.1621 0.2502 0.494 0.2851 0.4696 0.5064 0.3301 0.452 0.6736 0.5276 0.6932 0.1696 0.4899 0.2633 0.4085 0.2249 0.4154 0.326 0.5249
16.4463 10.0 1070 12.2585 0.3095 0.5506 0.3029 0.1738 0.2405 0.4996 0.2901 0.4721 0.5105 0.3271 0.4558 0.6864 0.5196 0.6892 0.2225 0.5241 0.264 0.4022 0.2102 0.4077 0.3309 0.5293

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
44
Safetensors
Model size
42.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for qubvel-hf/rtdetr-r50-cppe5-finetune

Finetuned
(12)
this model