pkedzia commited on
Commit
cb7b812
·
1 Parent(s): 7f91956

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -4
README.md CHANGED
@@ -11,9 +11,11 @@ license: lgpl-3.0
11
  library_name: sentence-transformers
12
  datasets:
13
  - radlab/polish-sts-dataset
 
 
14
  ---
15
 
16
- # polish-roberta-large-v2-sts
17
 
18
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
19
 
@@ -33,7 +35,7 @@ Then you can use the model like this:
33
  from sentence_transformers import SentenceTransformer
34
  sentences = ["Ala ma kota", "Ala ma psa"]
35
 
36
- model = SentenceTransformer('radlab/polish-roberta-large-v2-sts')
37
  embeddings = model.encode(sentences)
38
  print(embeddings)
39
  ```
@@ -58,8 +60,8 @@ def mean_pooling(model_output, attention_mask):
58
  sentences = ['Ala ma kota', 'Ala ma psa']
59
 
60
  # Load model from HuggingFace Hub
61
- tokenizer = AutoTokenizer.from_pretrained('radlab/polish-roberta-large-v2-sts')
62
- model = AutoModel.from_pretrained('radlab/polish-roberta-large-v2-sts')
63
 
64
  # Tokenize sentences
65
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
11
  library_name: sentence-transformers
12
  datasets:
13
  - radlab/polish-sts-dataset
14
+ models:
15
+ - sdadas/polish-roberta-large-v2
16
  ---
17
 
18
+ # radlab/polish-sts-v2
19
 
20
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
21
 
 
35
  from sentence_transformers import SentenceTransformer
36
  sentences = ["Ala ma kota", "Ala ma psa"]
37
 
38
+ model = SentenceTransformer('radlab/polish-sts-v2')
39
  embeddings = model.encode(sentences)
40
  print(embeddings)
41
  ```
 
60
  sentences = ['Ala ma kota', 'Ala ma psa']
61
 
62
  # Load model from HuggingFace Hub
63
+ tokenizer = AutoTokenizer.from_pretrained('radlab/polish-sts-v2')
64
+ model = AutoModel.from_pretrained('radlab/polish-sts-v2')
65
 
66
  # Tokenize sentences
67
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')