radm's picture
Update README.md
b31d237
|
raw
history blame
1.59 kB
---
language:
- ru
tags:
- causal-lm
- text-generation
license:
- apache-2.0
inference: false
widget:
- text: "Как обрести просветление?<s>"
example_title: "Википедия"
---
# RuGPT3Medium-tathagata
## Model description
This is the model for text generation for Russian based on [rugpt3medium_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3medium_based_on_gpt2).
## Intended uses & limitations
#### How to use
Тhis model was trained and run to generate text on RTX 3080
```python
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
DEVICE = torch.device("cuda:0")
model_name_or_path = "sberbank-ai/rugpt3medium_based_on_gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name_or_path)
model = GPT2LMHeadModel.from_pretrained('model').to(DEVICE)
text = "В чем смысл жизни?\n"
input_ids = tokenizer.encode(text, return_tensors="pt").to(DEVICE)
model.eval()
with torch.no_grad():
out = model.generate(input_ids,
do_sample=True,
num_beams=4,
temperature=1.1,
top_p=0.9,
top_k=50,
max_length=250,
min_length=50,
early_stopping=True,
num_return_sequences=3,
no_repeat_ngram_size=3
)
generated_text = list(map(tokenizer.decode, out))[0]
print()
print(generated_text)
```
## Dataset
- Dataset: [tathagata](https://huggingface.co/datasets/radm/tathagata)