metadata
language:
- en
license: other
tags:
- code
datasets:
- reciprocate/dpo_ultra-capybara-code_filtered-best
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: Coder1.8-ORPO-TEST
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 38.82
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=raincandy-u/Coder1.8-ORPO-TEST
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 60.48
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=raincandy-u/Coder1.8-ORPO-TEST
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.7
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=raincandy-u/Coder1.8-ORPO-TEST
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.38
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=raincandy-u/Coder1.8-ORPO-TEST
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 59.75
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=raincandy-u/Coder1.8-ORPO-TEST
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.45
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=raincandy-u/Coder1.8-ORPO-TEST
name: Open LLM Leaderboard
Coder1.8-ORPO-TEST
Model Description
Test model for ORPO finetune method, trained on ~20k code examples for 1 epoch on 2 x A40 cards with 4-bit QLora (lora rank=lora alpha=16).
Disclaimer
This is a test model and may generate incorrect responses. Use at your own risk.
Train Details
- Base: Qwen1.5-1.8B
- Training Data: ~20k code examples
- Epochs: 1
- Method: ORPO
- Hardware: 2 x A40
- Quantization: 4-bit QLora
- Lora Rank/Alpha: 16
Limitations
Limited training data and quantization may impact performance.
Join the Discussion
Have questions or feedback? Join our Discord server Here.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 45.76 |
AI2 Reasoning Challenge (25-Shot) | 38.82 |
HellaSwag (10-Shot) | 60.48 |
MMLU (5-Shot) | 46.70 |
TruthfulQA (0-shot) | 41.38 |
Winogrande (5-shot) | 59.75 |
GSM8k (5-shot) | 27.45 |