Fine-Tuning LLaMA-2 Chat Model with Medical QnA Dataset using QLoRA

This repository contains the code and configuration for fine-tuning the LLaMA-2 chat model using the Medical QnA dataset with the QLoRA technique.Used only 2k data elements for training due to constrained gpu resources.

Model and Dataset

  • Pre-trained Model: NousResearch/Llama-2-7b-chat-hf
  • Dataset for Fine-Tuning: randomani/MedicalQnA-llama2
  • Fine-Tuned Model Name: Llama-2-7b-Medchat-finetune

QLoRA Parameters

  • LoRA Attention Dimension (lora_r): 64
  • LoRA Scaling Alpha (lora_alpha): 16
  • LoRA Dropout Probability (lora_dropout): 0.1

bitsandbytes Parameters

  • Use 4-bit Precision (use_4bit): True
  • 4-bit Compute Dtype (bnb_4bit_compute_dtype): float16
  • 4-bit Quantization Type (bnb_4bit_quant_type): nf4
  • Use Nested Quantization (use_nested_quant): False

Training Arguments

  • Number of Training Epochs (num_train_epochs): 1
  • Use fp16 (fp16): False
  • Use bf16 (bf16): False
  • Training Batch Size per GPU (per_device_train_batch_size): 4
  • Evaluation Batch Size per GPU (per_device_eval_batch_size): 4
  • Gradient Accumulation Steps (gradient_accumulation_steps): 1
  • Enable Gradient Checkpointing (gradient_checkpointing): True
  • Maximum Gradient Norm (max_grad_norm): 0.3
  • Initial Learning Rate (learning_rate): 2e-4
  • Weight Decay (weight_decay): 0.001
  • Optimizer (optim): paged_adamw_32bit
  • Learning Rate Scheduler Type (lr_scheduler_type): cosine
  • Maximum Training Steps (max_steps): -1
  • Warmup Ratio (warmup_ratio): 0.03
  • Group Sequences by Length (group_by_length): True
  • Save Checkpoints Every X Steps (save_steps): 0
  • Logging Steps (logging_steps): 25

Supervised Fine-Tuning (SFT) Parameters

  • Maximum Sequence Length (max_seq_length): None
  • Packing Multiple Short Examples (packing): False

References

For more details and access to the dataset, visit the Hugging Face Dataset Page.

Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train randomani/Llama-2-7b-chat-Medchat-finetune