|
--- |
|
language: |
|
- en |
|
|
|
tags: |
|
- text2text-generation |
|
- mednli |
|
|
|
datasets: |
|
- pubmed |
|
- pmc/open_access |
|
widget: |
|
- text: "mednli: sentence1: In the ED, initial VS revealed T 98.9, HR 73, BP 121/90, RR 15, O2 sat 98% on RA. sentence2: The patient is hemodynamically stable" |
|
--- |
|
|
|
# SciFive Pubmed+PMC Large on MedNLI |
|
|
|
## Introduction |
|
|
|
Finetuned SciFive Pubmed+PMC Large model achieved state-of-the-art results on [MedNLI (Medical Natural Language Inference)](https://paperswithcode.com/sota/natural-language-inference-on-mednli) |
|
|
|
Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598) |
|
|
|
Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_ |
|
|
|
## How to use |
|
For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive). |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-large-Pubmed_PMC-MedNLI") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-large-Pubmed_PMC-MedNLI") |
|
model.cuda() |
|
|
|
sent_1 = "In the ED, initial VS revealed T 98.9, HR 73, BP 121/90, RR 15, O2 sat 98% on RA." |
|
sent_2 = "The patient is hemodynamically stable" |
|
text = f"mednli: sentence1: {sent_1} sentence2: {sent_2}" |
|
|
|
encoding = tokenizer.encode_plus(text, padding='max_length', max_length=256, return_tensors="pt") |
|
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") |
|
|
|
outputs = model.generate( |
|
input_ids=input_ids, attention_mask=attention_masks, |
|
max_length=8, |
|
early_stopping=True |
|
) |
|
|
|
for output in outputs: |
|
line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
print(line) |
|
``` |