metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Mujhe apne galtiyon ka ehsaas hai aur main unke liye maafi chahta hoon.
- text: >-
Mujhe yeh step samajhne mein dikkat ho rahi hai, kya aap madad kar sakte
hain?
- text: Mujhe abhi tak kuch update kyun nahi mila, yeh bahut frustrating hai.
- text: Is app ka loading time mujhe thoda zyada lagta hai.
- text: Kya aap mujhe is event ki timing bata sakte hain?
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
model-index:
- name: SetFit with MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.32
name: Accuracy
SetFit with MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
This is a SetFit model that can be used for Text Classification. This SetFit model uses MoritzLaurer/mDeBERTa-v3-base-mnli-xnli as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 19 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
4 |
|
16 |
|
8 |
|
13 |
|
15 |
|
12 |
|
11 |
|
2 |
|
18 |
|
14 |
|
7 |
|
3 |
|
5 |
|
0 |
|
6 |
|
17 |
|
10 |
|
9 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.32 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("rbojja/FT-mDeBERTa-v3-base-mnli-xnli")
# Run inference
preds = model("Kya aap mujhe is event ki timing bata sakte hain?")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 9.76 | 15 |
Label | Training Sample Count |
---|---|
0 | 6 |
1 | 3 |
2 | 3 |
3 | 5 |
4 | 7 |
5 | 3 |
6 | 6 |
7 | 8 |
8 | 6 |
9 | 2 |
10 | 2 |
11 | 5 |
12 | 6 |
13 | 5 |
14 | 9 |
15 | 9 |
16 | 9 |
17 | 3 |
18 | 3 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0017 | 1 | 0.2335 | - |
0.0853 | 50 | 0.2514 | - |
0.1706 | 100 | 0.1619 | - |
0.2560 | 150 | 0.1124 | - |
0.3413 | 200 | 0.078 | - |
0.4266 | 250 | 0.0623 | - |
0.5119 | 300 | 0.0576 | - |
0.5973 | 350 | 0.0421 | - |
0.6826 | 400 | 0.0391 | - |
0.7679 | 450 | 0.0386 | - |
0.8532 | 500 | 0.0302 | - |
0.9386 | 550 | 0.0245 | - |
Framework Versions
- Python: 3.10.16
- SetFit: 1.1.1
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cpu
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}