rdecoupes's picture
add an example
058a3a7 verified
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: tetis-textmine-2024-camembert-large-based
    results: []
widget:
  - text: >-
      À 8 M à l’ENE du phare de Nadji, le port de pêche de Sidi Abderrahmane
      (36° 29,7' N — 1° 05,7' E) est construit au bord du village de Soug el
      Bgar (pointe Rouge).
    example_title: Defi_TextMine

license: cc-by-nc-4.0

TETIS @ Challenge TextMine 2024


This model is a NER based on Camembert-Large for the Kaggle Competition (in French): https://www.kaggle.com/competitions/defi-textmine-2024/

This model could be re-use with HuggingFace transormers pipeline. To use it, please refer to its Github

Participants
Rémy Decoupes
Roberto Interdonato
Rodrique Kafando
Mehtab Syed Alam
Maguelonne Teisseire
Mathieu Roche
Sarah Valentin

tetis-textmine-2024-camembert-large-based

This model is a fine-tuned version of camembert/camembert-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1106
  • Precision: 0.9327
  • Recall: 0.9471
  • F1: 0.9398
  • Accuracy: 0.9843
  • Aucun F1: 0.9434
  • Geogfeat F1: 0.9193
  • Geogfeat geogname F1: 0.9554
  • Geogname F1: 0.9133
  • Name geogname F1: 0.9519

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Aucun F1 Geogfeat F1 Geogfeat geogname F1 Geogname F1 Name geogname F1
No log 1.0 192 0.1045 0.9171 0.9369 0.9269 0.9828 0.9303 0.8943 0.9509 0.9174 0.9373
No log 2.0 384 0.1029 0.9223 0.9471 0.9345 0.9830 0.9339 0.9170 0.9522 0.9419 0.9377
0.0072 3.0 576 0.0952 0.9136 0.9466 0.9298 0.9840 0.9226 0.8993 0.9587 0.9440 0.9571
0.0072 4.0 768 0.1054 0.9347 0.9409 0.9378 0.9838 0.9380 0.9256 0.9603 0.9164 0.9433
0.0072 5.0 960 0.1165 0.9229 0.9347 0.9288 0.9814 0.9328 0.9013 0.9441 0.9060 0.9451
0.0071 6.0 1152 0.1070 0.9306 0.9462 0.9383 0.9840 0.9419 0.9144 0.9487 0.9213 0.9533
0.0071 7.0 1344 0.1037 0.9285 0.9453 0.9368 0.9844 0.9392 0.9100 0.9534 0.9271 0.9507
0.0013 8.0 1536 0.1127 0.9335 0.9475 0.9405 0.9841 0.9451 0.9175 0.9505 0.9222 0.9520
0.0013 9.0 1728 0.1110 0.9356 0.9488 0.9422 0.9849 0.9452 0.9195 0.9571 0.9186 0.9572
0.0013 10.0 1920 0.1106 0.9327 0.9471 0.9398 0.9843 0.9434 0.9193 0.9554 0.9133 0.9519

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.0
  • Tokenizers 0.13.3