test

This is a standard PEFT LoRA derived from stabilityai/stable-diffusion-3-medium-diffusers.

The main validation prompt used during training was:

One canola seedling that is about 11 days old in a bright blue cylindrical cup on a bright blue background

Validation settings

  • CFG: 7.5
  • CFG Rescale: 0.0
  • Steps: 10
  • Sampler: None
  • Seed: 42
  • Resolution: 1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, floating leaves
Prompt
One canola seedling that is about 11 days old in a bright blue cylindrical cup on a bright blue background
Negative Prompt
blurry, floating leaves

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 6
  • Training steps: 129
  • Learning rate: 0.00105
  • Max grad norm: 0.01
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: Pure BF16
  • Quantised: Yes: int8-quanto
  • Xformers: Not used
  • LoRA Rank: 256
  • LoRA Alpha: 256.0
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

canola-test

  • Repeats: 1
  • Total number of images: 10
  • Total number of aspect buckets: 1
  • Resolution: 1024 px
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'stabilityai/stable-diffusion-3-medium-diffusers'
adapter_id = 'rdeinla/test'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "One canola seedling that is about 11 days old in a bright blue cylindrical cup on a bright blue background"
negative_prompt = 'blurry, floating leaves'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=10,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=7.5,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
443
Inference API
Examples

Model tree for rdeinla/test

Adapter
(175)
this model