asahi417's picture
model update
4b7bf6c
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob-conceptnet-validated
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.8325396825396826
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6925133689839572
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.7002967359050445
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.81100611450806
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.964
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6535087719298246
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.6574074074074074
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9156245291547386
- name: F1 (macro)
type: f1_macro
value: 0.9111335097935093
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8556338028169014
- name: F1 (macro)
type: f1_macro
value: 0.6954232134946761
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.6863488624052004
- name: F1 (macro)
type: f1_macro
value: 0.6687072468924556
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9609793420045907
- name: F1 (macro)
type: f1_macro
value: 0.8894889212672226
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.911939830774052
- name: F1 (macro)
type: f1_macro
value: 0.9099470654822349
---
# relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob-conceptnet-validated
RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
It achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob-conceptnet-validated/raw/main/analogy.json)):
- Accuracy on SAT (full): 0.6925133689839572
- Accuracy on SAT: 0.7002967359050445
- Accuracy on BATS: 0.81100611450806
- Accuracy on U2: 0.6535087719298246
- Accuracy on U4: 0.6574074074074074
- Accuracy on Google: 0.964
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob-conceptnet-validated/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.9156245291547386
- Micro F1 score on CogALexV: 0.8556338028169014
- Micro F1 score on EVALution: 0.6863488624052004
- Micro F1 score on K&H+N: 0.9609793420045907
- Micro F1 score on ROOT09: 0.911939830774052
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob-conceptnet-validated/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.8325396825396826
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob-conceptnet-validated")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
```
### Training hyperparameters
The following hyperparameters were used during training:
- model: roberta-large
- max_length: 64
- mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- template_mode: manual
- template: I wasn’t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj>
- loss_function: info_loob
- temperature_nce_constant: 0.05
- temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'}
- epoch: 22
- batch: 128
- lr: 5e-06
- lr_decay: False
- lr_warmup: 1
- weight_decay: 0
- random_seed: 0
- exclude_relation: None
- n_sample: 640
- gradient_accumulation: 8
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-d-loob-conceptnet-validated/raw/main/trainer_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
```
@inproceedings{ushio-etal-2021-distilling-relation-embeddings,
title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels",
author = "Ushio, Asahi and
Schockaert, Steven and
Camacho-Collados, Jose",
booktitle = "EMNLP 2021",
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```