|
|
|
--- |
|
license: cc-by-4.0 |
|
metrics: |
|
- bleu4 |
|
- meteor |
|
- rouge-l |
|
- bertscore |
|
- moverscore |
|
language: en |
|
datasets: |
|
- lmqg/qag_tweetqa |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- questions and answers generation |
|
widget: |
|
- text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." |
|
example_title: "Questions & Answers Generation Example 1" |
|
model-index: |
|
- name: research-backup/t5-base-tweetqa-qag-np |
|
results: |
|
- task: |
|
name: Text2text Generation |
|
type: text2text-generation |
|
dataset: |
|
name: lmqg/qag_tweetqa |
|
type: default |
|
args: default |
|
metrics: |
|
- name: BLEU4 (Question & Answer Generation) |
|
type: bleu4_question_answer_generation |
|
value: 13.4 |
|
- name: ROUGE-L (Question & Answer Generation) |
|
type: rouge_l_question_answer_generation |
|
value: 37.23 |
|
- name: METEOR (Question & Answer Generation) |
|
type: meteor_question_answer_generation |
|
value: 31.14 |
|
- name: BERTScore (Question & Answer Generation) |
|
type: bertscore_question_answer_generation |
|
value: 90.8 |
|
- name: MoverScore (Question & Answer Generation) |
|
type: moverscore_question_answer_generation |
|
value: 62.26 |
|
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation) |
|
type: qa_aligned_f1_score_bertscore_question_answer_generation |
|
value: 92.4 |
|
- name: QAAlignedRecall-BERTScore (Question & Answer Generation) |
|
type: qa_aligned_recall_bertscore_question_answer_generation |
|
value: 92.03 |
|
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation) |
|
type: qa_aligned_precision_bertscore_question_answer_generation |
|
value: 92.78 |
|
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation) |
|
type: qa_aligned_f1_score_moverscore_question_answer_generation |
|
value: 64.83 |
|
- name: QAAlignedRecall-MoverScore (Question & Answer Generation) |
|
type: qa_aligned_recall_moverscore_question_answer_generation |
|
value: 64.07 |
|
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation) |
|
type: qa_aligned_precision_moverscore_question_answer_generation |
|
value: 65.68 |
|
--- |
|
|
|
# Model Card of `research-backup/t5-base-tweetqa-qag-np` |
|
This model is fine-tuned version of [t5-base](https://huggingface.co/t5-base) for question & answer pair generation task on the [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). |
|
This model is fine-tuned without a task prefix. |
|
|
|
### Overview |
|
- **Language model:** [t5-base](https://huggingface.co/t5-base) |
|
- **Language:** en |
|
- **Training data:** [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) (default) |
|
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/) |
|
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) |
|
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) |
|
|
|
### Usage |
|
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) |
|
```python |
|
from lmqg import TransformersQG |
|
|
|
# initialize model |
|
model = TransformersQG(language="en", model="research-backup/t5-base-tweetqa-qag-np") |
|
|
|
# model prediction |
|
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes") |
|
|
|
``` |
|
|
|
- With `transformers` |
|
```python |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text2text-generation", "research-backup/t5-base-tweetqa-qag-np") |
|
output = pipe("Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.") |
|
|
|
``` |
|
|
|
## Evaluation |
|
|
|
|
|
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/research-backup/t5-base-tweetqa-qag-np/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_tweetqa.default.json) |
|
|
|
| | Score | Type | Dataset | |
|
|:--------------------------------|--------:|:--------|:---------------------------------------------------------------------| |
|
| BERTScore | 90.8 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
| Bleu_1 | 40.49 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
| Bleu_2 | 27.77 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
| Bleu_3 | 19.18 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
| Bleu_4 | 13.4 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
| METEOR | 31.14 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
| MoverScore | 62.26 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
| QAAlignedF1Score (BERTScore) | 92.4 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
| QAAlignedF1Score (MoverScore) | 64.83 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
| QAAlignedPrecision (BERTScore) | 92.78 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
| QAAlignedPrecision (MoverScore) | 65.68 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
| QAAlignedRecall (BERTScore) | 92.03 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
| QAAlignedRecall (MoverScore) | 64.07 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
| ROUGE_L | 37.23 | default | [lmqg/qag_tweetqa](https://huggingface.co/datasets/lmqg/qag_tweetqa) | |
|
|
|
|
|
|
|
## Training hyperparameters |
|
|
|
The following hyperparameters were used during fine-tuning: |
|
- dataset_path: lmqg/qag_tweetqa |
|
- dataset_name: default |
|
- input_types: ['paragraph'] |
|
- output_types: ['questions_answers'] |
|
- prefix_types: None |
|
- model: t5-base |
|
- max_length: 256 |
|
- max_length_output: 128 |
|
- epoch: 15 |
|
- batch: 32 |
|
- lr: 0.0001 |
|
- fp16: False |
|
- random_seed: 1 |
|
- gradient_accumulation_steps: 2 |
|
- label_smoothing: 0.0 |
|
|
|
The full configuration can be found at [fine-tuning config file](https://huggingface.co/research-backup/t5-base-tweetqa-qag-np/raw/main/trainer_config.json). |
|
|
|
## Citation |
|
``` |
|
@inproceedings{ushio-etal-2022-generative, |
|
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", |
|
author = "Ushio, Asahi and |
|
Alva-Manchego, Fernando and |
|
Camacho-Collados, Jose", |
|
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", |
|
month = dec, |
|
year = "2022", |
|
address = "Abu Dhabi, U.A.E.", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
|
|
``` |
|
|