SetFit with BAAI/bge-base-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-base-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-base-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 6 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
5 |
|
1 |
|
4 |
|
2 |
|
0 |
|
3 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("research-dump/bge-base-en-v1.5_wikidata_entity_outcome_prediction_v1")
# Run inference
preds = model("###Instruction: Multi-class classification, answer with one of the labels: [delete, keep, speedy delete, comment] : ###Input: Q16629320: Template:Rfd links Merged with Q15628951 , via The Game -- Moxfyre ([[User talk:Moxfyre| int:Talkpagelinktext ]]) 18:14, 2 July 2014 (UTC)")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 29 | 52.91 | 991 |
Label | Training Sample Count |
---|---|
0 | 1 |
1 | 514 |
2 | 12 |
3 | 1 |
4 | 39 |
5 | 133 |
Training Hyperparameters
- batch_size: (8, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (0.0001, 0.0001)
- head_learning_rate: 5e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: True
- use_amp: True
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.1493 | - |
0.0571 | 500 | 0.1114 | 0.1701 |
0.1143 | 1000 | 0.0474 | 0.1838 |
0.1714 | 1500 | 0.0418 | 0.1427 |
0.2286 | 2000 | 0.0317 | 0.1665 |
0.2857 | 2500 | 0.0296 | 0.1820 |
0.3429 | 3000 | 0.022 | 0.1714 |
0.4 | 3500 | 0.0245 | 0.1899 |
0.4571 | 4000 | 0.0222 | 0.1951 |
0.5143 | 4500 | 0.0176 | 0.2051 |
0.5714 | 5000 | 0.0134 | 0.2062 |
0.6286 | 5500 | 0.0099 | 0.2131 |
0.6857 | 6000 | 0.0086 | 0.2020 |
0.7429 | 6500 | 0.009 | 0.1906 |
0.8 | 7000 | 0.0042 | 0.1960 |
0.8571 | 7500 | 0.0032 | 0.1942 |
0.9143 | 8000 | 0.0028 | 0.1941 |
0.9714 | 8500 | 0.0035 | 0.1951 |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.1
- PyTorch: 2.2.1+cu121
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for research-dump/bge-base-en-v1.5_wikidata_entity_outcome_prediction_v1
Base model
BAAI/bge-base-en-v1.5