BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("revtestuser/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Net cash used in financing activities totaled $2,614 in 2023, compared to $4,283 in 2022.',
'What was the net cash used in financing activities in 2023 and how does it compare to 2022?',
"What are Chipotle's key strategies for business growth as discussed in their strategy?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6971 |
cosine_accuracy@3 | 0.82 |
cosine_accuracy@5 | 0.8686 |
cosine_accuracy@10 | 0.9057 |
cosine_precision@1 | 0.6971 |
cosine_precision@3 | 0.2733 |
cosine_precision@5 | 0.1737 |
cosine_precision@10 | 0.0906 |
cosine_recall@1 | 0.6971 |
cosine_recall@3 | 0.82 |
cosine_recall@5 | 0.8686 |
cosine_recall@10 | 0.9057 |
cosine_ndcg@10 | 0.8036 |
cosine_mrr@10 | 0.7707 |
cosine_map@100 | 0.7749 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6957 |
cosine_accuracy@3 | 0.8229 |
cosine_accuracy@5 | 0.8643 |
cosine_accuracy@10 | 0.9043 |
cosine_precision@1 | 0.6957 |
cosine_precision@3 | 0.2743 |
cosine_precision@5 | 0.1729 |
cosine_precision@10 | 0.0904 |
cosine_recall@1 | 0.6957 |
cosine_recall@3 | 0.8229 |
cosine_recall@5 | 0.8643 |
cosine_recall@10 | 0.9043 |
cosine_ndcg@10 | 0.8028 |
cosine_mrr@10 | 0.7701 |
cosine_map@100 | 0.7744 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6871 |
cosine_accuracy@3 | 0.8186 |
cosine_accuracy@5 | 0.8529 |
cosine_accuracy@10 | 0.8986 |
cosine_precision@1 | 0.6871 |
cosine_precision@3 | 0.2729 |
cosine_precision@5 | 0.1706 |
cosine_precision@10 | 0.0899 |
cosine_recall@1 | 0.6871 |
cosine_recall@3 | 0.8186 |
cosine_recall@5 | 0.8529 |
cosine_recall@10 | 0.8986 |
cosine_ndcg@10 | 0.7952 |
cosine_mrr@10 | 0.762 |
cosine_map@100 | 0.7664 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6686 |
cosine_accuracy@3 | 0.8129 |
cosine_accuracy@5 | 0.8429 |
cosine_accuracy@10 | 0.8943 |
cosine_precision@1 | 0.6686 |
cosine_precision@3 | 0.271 |
cosine_precision@5 | 0.1686 |
cosine_precision@10 | 0.0894 |
cosine_recall@1 | 0.6686 |
cosine_recall@3 | 0.8129 |
cosine_recall@5 | 0.8429 |
cosine_recall@10 | 0.8943 |
cosine_ndcg@10 | 0.7841 |
cosine_mrr@10 | 0.7487 |
cosine_map@100 | 0.7527 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6471 |
cosine_accuracy@3 | 0.7829 |
cosine_accuracy@5 | 0.8243 |
cosine_accuracy@10 | 0.8686 |
cosine_precision@1 | 0.6471 |
cosine_precision@3 | 0.261 |
cosine_precision@5 | 0.1649 |
cosine_precision@10 | 0.0869 |
cosine_recall@1 | 0.6471 |
cosine_recall@3 | 0.7829 |
cosine_recall@5 | 0.8243 |
cosine_recall@10 | 0.8686 |
cosine_ndcg@10 | 0.7602 |
cosine_mrr@10 | 0.7253 |
cosine_map@100 | 0.7303 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 44.91 tokens
- max: 246 tokens
- min: 8 tokens
- mean: 20.43 tokens
- max: 43 tokens
- Samples:
positive anchor Certain provisions of the final rule become effective on April 1, 2024, but the majority of the final rule’s operative provisions (including the revisions to the definition of “limited purpose bank”) become effective on January 1, 2026, with additional data collection and reporting requirements becoming effective on January 1, 2027.
What are the effective dates for the main provisions and additional data collection and reporting requirements of the final rule impacting AENB's compliance obligations?
Our total revenue for 2023 was $134.90 billion, an increase of 16% compared to 2022.
What was the total revenue for the year 2023 and the percentage increase from 2022?
As of December 31, 2023, our domestic Chief Medical Officer leads a team of 22 nephrologists in our physician leadership team as part of our domestic Office of the Chief Medical Officer.
How many physicians are part of the domestic Office of the Chief Medical Officer at DaVita as of December 31, 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.6288 | - | - | - | - | - |
0.9746 | 12 | - | 0.7384 | 0.7485 | 0.7508 | 0.7013 | 0.7561 |
1.6244 | 20 | 0.6896 | - | - | - | - | - |
1.9492 | 24 | - | 0.7499 | 0.7621 | 0.7676 | 0.7220 | 0.7704 |
2.4365 | 30 | 0.4965 | - | - | - | - | - |
2.9239 | 36 | - | 0.7529 | 0.7669 | 0.7739 | 0.7302 | 0.7754 |
3.2487 | 40 | 0.415 | - | - | - | - | - |
3.8985 | 48 | - | 0.7527 | 0.7664 | 0.7744 | 0.7303 | 0.7749 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for revtestuser/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.697
- Cosine Accuracy@3 on dim 768self-reported0.820
- Cosine Accuracy@5 on dim 768self-reported0.869
- Cosine Accuracy@10 on dim 768self-reported0.906
- Cosine Precision@1 on dim 768self-reported0.697
- Cosine Precision@3 on dim 768self-reported0.273
- Cosine Precision@5 on dim 768self-reported0.174
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.697
- Cosine Recall@3 on dim 768self-reported0.820