SentenceTransformer based on BAAI/bge-reranker-base
This is a sentence-transformers model finetuned from BAAI/bge-reranker-base on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-reranker-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- train
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("rezarahim/bge-finetuned-reranker")
# Run inference
sentences = [
"What are the potential risks associated with the company's acquisitions and strategic investments?",
" The potential risks include impairment of the company's ability to grow its business, develop new products, or sell its products, as well as the possibility of regulatory conditions reducing the value of the acquisition, volatility in results, losses up to the value of the investment, and impairment losses due to the failure of the invested companies.",
' $7,280.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
bge-base-en
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0056 |
cosine_accuracy@3 | 0.0506 |
cosine_accuracy@5 | 0.0899 |
cosine_accuracy@10 | 0.1685 |
cosine_precision@1 | 0.0056 |
cosine_precision@3 | 0.0169 |
cosine_precision@5 | 0.018 |
cosine_precision@10 | 0.0169 |
cosine_recall@1 | 0.0056 |
cosine_recall@3 | 0.0506 |
cosine_recall@5 | 0.0899 |
cosine_recall@10 | 0.1685 |
cosine_ndcg@10 | 0.0728 |
cosine_mrr@10 | 0.0442 |
cosine_map@100 | 0.0749 |
dot_accuracy@1 | 0.0169 |
dot_accuracy@3 | 0.0337 |
dot_accuracy@5 | 0.0843 |
dot_accuracy@10 | 0.1854 |
dot_precision@1 | 0.0169 |
dot_precision@3 | 0.0112 |
dot_precision@5 | 0.0169 |
dot_precision@10 | 0.0185 |
dot_recall@1 | 0.0169 |
dot_recall@3 | 0.0337 |
dot_recall@5 | 0.0843 |
dot_recall@10 | 0.1854 |
dot_ndcg@10 | 0.0789 |
dot_mrr@10 | 0.0478 |
dot_map@100 | 0.0757 |
Training Details
Training Dataset
train
- Dataset: train
- Size: 178 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 178 samples:
anchor positive type string string details - min: 12 tokens
- mean: 23.55 tokens
- max: 50 tokens
- min: 3 tokens
- mean: 42.22 tokens
- max: 135 tokens
- Samples:
anchor positive What is the publication date of the NVIDIA Corporation Annual Report 2024?
February 21st, 2024
What is the filing date of the 10-K report for NVIDIA Corporation in 2004?
The filing dates of the 10-K reports for NVIDIA Corporation in 2004 are May 20th, March 29th, and April 25th.
What is the purpose of the section of the filing that requires the registrant to indicate whether it has submitted electronically every Interactive Data File required to be submitted during the preceding 12 months?
The purpose of this section is to comply with Rule 405 of Regulation S-T, which requires the registrant to submit electronic files for certain financial information.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 4per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 25lr_scheduler_type
: cosinewarmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 25max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | bge-base-en_dot_map@100 |
---|---|---|---|
0 | 0 | - | 0.0362 |
0.7111 | 2 | - | 0.0369 |
1.7778 | 5 | - | 0.0539 |
2.8444 | 8 | - | 0.0393 |
3.5556 | 10 | 2.0824 | - |
3.9111 | 11 | - | 0.0559 |
4.9778 | 14 | - | 0.0632 |
5.6889 | 16 | - | 0.08 |
6.7556 | 19 | - | 0.0692 |
7.1111 | 20 | 1.2812 | - |
7.8222 | 22 | - | 0.0627 |
8.8889 | 25 | - | 0.0623 |
9.9556 | 28 | - | 0.0692 |
10.6667 | 30 | 1.0855 | 0.0884 |
11.7333 | 33 | - | 0.0754 |
12.8 | 36 | - | 0.0607 |
13.8667 | 39 | - | 0.0725 |
14.2222 | 40 | 0.8978 | - |
14.9333 | 42 | - | 0.0747 |
16.0 | 45 | - | 0.0766 |
16.7111 | 47 | - | 0.0756 |
17.7778 | 50 | 0.8563 | 0.0757 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for rezarahim/bge-finetuned-reranker
Base model
BAAI/bge-reranker-baseEvaluation results
- Cosine Accuracy@1 on bge base enself-reported0.006
- Cosine Accuracy@3 on bge base enself-reported0.051
- Cosine Accuracy@5 on bge base enself-reported0.090
- Cosine Accuracy@10 on bge base enself-reported0.169
- Cosine Precision@1 on bge base enself-reported0.006
- Cosine Precision@3 on bge base enself-reported0.017
- Cosine Precision@5 on bge base enself-reported0.018
- Cosine Precision@10 on bge base enself-reported0.017
- Cosine Recall@1 on bge base enself-reported0.006
- Cosine Recall@3 on bge base enself-reported0.051