|
--- |
|
language: |
|
- pt |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- Misral |
|
- Portuguese |
|
- 7b |
|
base_model: mistralai/Mistral-7B-Instruct-v0.2 |
|
datasets: |
|
- pablo-moreira/gpt4all-j-prompt-generations-pt |
|
- rhaymison/superset |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: Mistral-portuguese-luana-7b |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: ENEM Challenge (No Images) |
|
type: eduagarcia/enem_challenge |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 58.64 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BLUEX (No Images) |
|
type: eduagarcia-temp/BLUEX_without_images |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 47.98 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: OAB Exams |
|
type: eduagarcia/oab_exams |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 38.82 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 RTE |
|
type: assin2 |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 90.63 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 STS |
|
type: eduagarcia/portuguese_benchmark |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: pearson |
|
value: 75.81 |
|
name: pearson |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: FaQuAD NLI |
|
type: ruanchaves/faquad-nli |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 57.79 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HateBR Binary |
|
type: ruanchaves/hatebr |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 77.24 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: PT Hate Speech Binary |
|
type: hate_speech_portuguese |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 68.5 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: tweetSentBR |
|
type: eduagarcia-temp/tweetsentbr |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 63.0 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/Mistral-portuguese-luana-7b |
|
name: Open Portuguese LLM Leaderboard |
|
--- |
|
|
|
# Mistral-portuguese-luana-7b |
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/luana7b.webp" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/> |
|
</p> |
|
|
|
|
|
This model was trained with a superset of 200,000 instructions in Portuguese. |
|
The model comes to help fill the gap in models in Portuguese. Tuned from the Mistral 7b, the model was adjusted mainly for instructional tasks. |
|
|
|
If you are looking for enhanced compatibility, the Luana model also has a GGUF family that can be run with LlamaCpp. |
|
You can explore the GGUF models starting with the one below: |
|
|
|
- [Mistral-portuguese-luana-7b-q8-gguf](https://huggingface.co/rhaymison/Mistral-portuguese-luana-7b-q8-gguf) |
|
- [Mistral-portuguese-luana-7b-f16-gguf](https://huggingface.co/rhaymison/Mistral-portuguese-luana-7b-f16-gguf) |
|
|
|
Explore this and other models to find the best fit for your needs! |
|
|
|
# How to use |
|
|
|
### FULL MODEL : A100 |
|
### HALF MODEL: L4 |
|
### 8bit or 4bit : T4 or V100 |
|
|
|
You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. |
|
Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. |
|
Important points like these help models (even smaller models like 7b) to perform much better. |
|
|
|
```python |
|
!pip install -q -U transformers |
|
!pip install -q -U accelerate |
|
!pip install -q -U bitsandbytes |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
model = AutoModelForCausalLM.from_pretrained("rhaymison/Mistral-portuguese-luana-7b", device_map= {"": 0}) |
|
tokenizer = AutoTokenizer.from_pretrained("rhaymison/Mistral-portuguese-luana-7b") |
|
model.eval() |
|
|
|
``` |
|
|
|
You can use with Pipeline but in this example i will use such as Streaming |
|
```python |
|
|
|
inputs = tokenizer([f"""<s>[INST] Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. |
|
Escreva uma resposta que complete adequadamente o pedido. |
|
### instrução: aja como um professor de matemática e me explique porque 2 + 2 = 4. |
|
[/INST]"""], return_tensors="pt") |
|
|
|
inputs.to(model.device) |
|
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=200) |
|
|
|
``` |
|
|
|
If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. |
|
For the complete model in colab you will need the A100. |
|
If you want to use 4bits or 8bits, T4 or L4 will already solve the problem. |
|
|
|
# 4bits example |
|
|
|
```python |
|
from transformers import BitsAndBytesConfig |
|
import torch |
|
nb_4bit_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
quantization_config=bnb_config, |
|
device_map={"": 0} |
|
) |
|
|
|
``` |
|
|
|
# LangChain |
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/lang.png" alt="Bode Logo" width="100%" style="margin-left:'auto' margin-right:'auto' display:'block'"/> |
|
</p> |
|
|
|
|
|
|
|
# [Open Portuguese LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/rhaymison/Mistral-portuguese-luana-7b) |
|
|
|
| Metric | Value | |
|
|--------------------------|---------| |
|
|Average |**64.27**| |
|
|ENEM Challenge (No Images)| 58.64| |
|
|BLUEX (No Images) | 47.98| |
|
|OAB Exams | 38.82| |
|
|Assin2 RTE | 90.63| |
|
|Assin2 STS | 75.81| |
|
|FaQuAD NLI | 57.79| |
|
|HateBR Binary | 77.24| |
|
|PT Hate Speech Binary | 68.50| |
|
|tweetSentBR | 63| |
|
|
|
|
|
|
|
### Comments |
|
|
|
Any idea, help or report will always be welcome. |
|
|
|
email: [email protected] |
|
|
|
<div style="display:flex; flex-direction:row; justify-content:left"> |
|
<a href="https://www.linkedin.com/in/rhaymison-cristian-betini-2b3016175/" target="_blank"> |
|
<img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white"> |
|
</a> |
|
<a href="https://github.com/rhaymisonbetini" target="_blank"> |
|
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white"> |
|
</a> |
|
</div> |