metadata
language:
- uz
tags:
- transformers
- mit
- robert
- uzrobert
- uzbek
- cyrillic
- latin
license: apache-2.0
widget:
- text: Kuchli yomg‘irlar tufayli bir qator <mask> kuchli sel oqishi kuzatildi.
example_title: Latin script
- text: >-
Алишер Навоий – улуғ ўзбек ва бошқа туркий халқларнинг <mask>, мутафаккири
ва давлат арбоби бўлган.
example_title: Cyrillic script
UzRoBerta model.
Pre-prepared model in Uzbek (Cyrillic and latin script) to model the masked language and predict the next sentences.
How to use.
You can use this model directly with a pipeline for masked language modeling:
from transformers import pipeline
unmasker = pipeline('fill-mask', model='rifkat/uztext-3Gb-BPE-Roberta')
unmasker("Алишер Навоий – улуғ ўзбек ва бошқа туркий халқларнинг [mask], мутафаккири ва давлат арбоби бўлган.")
[{'score': 0.5902208685874939,
'sequence': 'Алишер Навоий – улуғ ўзбек ва бошқа туркий халқларнинг шоири, мутафаккири ва давлат арбоби бўлган.',
'token': 28809,
'token_str': ' шоири'},
{'score': 0.08303504437208176,
'sequence': 'Алишер Навоий – улуғ ўзбек ва бошқа туркий халқларнинг устози, мутафаккири ва давлат арбоби бўлган.',
'token': 17484,
'token_str': ' устози'},
{'score': 0.035882771015167236,
'sequence': 'Алишер Навоий – улуғ ўзбек ва бошқа туркий халқларнинг арбоби, мутафаккири ва давлат арбоби бўлган.',
'token': 34552,
'token_str': ' арбоби'},
{'score': 0.03447483479976654,
'sequence': 'Алишер Навоий – улуғ ўзбек ва бошқа туркий халқларнинг асосчиси, мутафаккири ва давлат арбоби бўлган.',
'token': 14034,
'token_str': ' асосчиси'},
{'score': 0.03044942207634449,
'sequence': 'Алишер Навоий – улуғ ўзбек ва бошқа туркий халқларнинг дўсти, мутафаккири ва давлат арбоби бўлган.',
'token': 28100,
'token_str': ' дўсти'}]
unmasker("Kuchli yomg‘irlar tufayli bir qator [mask] kuchli sel oqishi kuzatildi.")
[{'score': 0.410250186920166,
'sequence': 'Kuchli yomg‘irlar tufayli bir qator hududlarda kuchli sel oqishi kuzatildi.',
'token': 11009,
'token_str': ' hududlarda'},
{'score': 0.2023029774427414,
'sequence': 'Kuchli yomg‘irlar tufayli bir qator tumanlarda kuchli sel oqishi kuzatildi.',
'token': 35370,
'token_str': ' tumanlarda'},
{'score': 0.129830002784729,
'sequence': 'Kuchli yomg‘irlar tufayli bir qator viloyatlarda kuchli sel oqishi kuzatildi.',
'token': 33584,
'token_str': ' viloyatlarda'},
{'score': 0.04539087787270546,
'sequence': 'Kuchli yomg‘irlar tufayli bir qator mamlakatlarda kuchli sel oqishi kuzatildi.',
'token': 19315,
'token_str': ' mamlakatlarda'},
{'score': 0.0369882769882679,
'sequence': 'Kuchli yomg‘irlar tufayli bir qator joylarda kuchli sel oqishi kuzatildi.',
'token': 5853,
'token_str': ' joylarda'}]
Training data.
UzBERT model was pretrained on ≈2M news articles (≈3Gb).
@misc {rifkat_davronov_2022, author = { {Rifkat Davronov} }, title = { uztext-3Gb-BPE-Roberta (Revision 0c87494) }, year = 2022, url = { https://huggingface.co/rifkat/uztext-3Gb-BPE-Roberta }, doi = { 10.57967/hf/0140 }, publisher = { Hugging Face } }