|
--- |
|
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png |
|
license: gemma |
|
datasets: |
|
- mc4 |
|
- wikipedia |
|
- EleutherAI/pile |
|
- oscar-corpus/colossal-oscar-1.0 |
|
- cc100 |
|
language: |
|
- ja |
|
- en |
|
tags: |
|
- gemma2 |
|
inference: false |
|
base_model: google/gemma-2-2b |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
--- |
|
|
|
# `Gemma 2 Baku 2B (rinna/gemma-2-baku-2b)` |
|
|
|
![rinna-icon](./rinna.png) |
|
|
|
# Overview |
|
|
|
We conduct continual pre-training of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on **80B** tokens from a mixture of Japanese and English datasets. The continual pre-training improves the model's performance on Japanese tasks. |
|
|
|
The name `baku` comes from the Japanese word [`獏/ばく/Baku`](https://ja.wikipedia.org/wiki/獏), which is a kind of Japanese mythical creature ([`妖怪/ようかい/Youkai`](https://ja.wikipedia.org/wiki/%E5%A6%96%E6%80%AA)). |
|
|
|
| Size | Continual Pre-Training | Instruction-Tuning | |
|
| :- | :- | :- | |
|
| 2B | Gemma 2 Baku 2B [[HF]](https://huggingface.co/rinna/gemma-2-baku-2b) | Gemma 2 Baku 2B Instruct [[HF]](https://huggingface.co/rinna/gemma-2-baku-2b-it) | |
|
|
|
* **Library** |
|
|
|
The model was trained using code based on [Lightning-AI/litgpt](https://github.com/Lightning-AI/litgpt). |
|
|
|
* **Model architecture** |
|
|
|
A 26-layer, 2304-hidden-size transformer-based language model. Please refer to the [Gemma 2 Model Card](https://www.kaggle.com/models/google/gemma-2/) for detailed information on the model's architecture. |
|
|
|
* **Training** |
|
|
|
The model was initialized with the [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) model and continually trained on around **80B** tokens from a mixture of the following corpora |
|
- [Japanese CC-100](https://huggingface.co/datasets/cc100) |
|
- [Japanese C4](https://huggingface.co/datasets/mc4) |
|
- [Japanese OSCAR](https://huggingface.co/datasets/oscar-corpus/colossal-oscar-1.0) |
|
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile) |
|
- [Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) |
|
- rinna curated Japanese dataset |
|
|
|
* **Contributors** |
|
- [Toshiaki Wakatsuki](https://huggingface.co/t-w) |
|
- [Xinqi Chen](https://huggingface.co/Keely0419) |
|
- [Kei Sawada](https://huggingface.co/keisawada) |
|
|
|
--- |
|
|
|
# Benchmarking |
|
|
|
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html). |
|
|
|
--- |
|
|
|
# How to use the model |
|
|
|
~~~python |
|
import transformers |
|
import torch |
|
|
|
model_id = "rinna/gemma-2-baku-2b" |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model_id, |
|
model_kwargs={"torch_dtype": torch.bfloat16, "attn_implementation": "eager"}, |
|
device_map="auto" |
|
) |
|
output = pipeline( |
|
"西田幾多郎は、", |
|
max_new_tokens=256, |
|
do_sample=True |
|
) |
|
print(output[0]["generated_text"]) |
|
~~~ |
|
|
|
It is recommended to use eager attention when conducting batch inference under bfloat16 precision. |
|
Currently, Gemma 2 yields NaN values for input sequences with padding when the default attention mechanism (torch.scaled_dot_product_attention) is employed in conjunction with bfloat16. |
|
|
|
--- |
|
|
|
# Tokenization |
|
The model uses the original [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) tokenizer. |
|
|
|
--- |
|
|
|
# How to cite |
|
```bibtex |
|
@misc{rinna-gemma-2-baku-2b, |
|
title = {rinna/gemma-2-baku-2b}, |
|
author = {Wakatsuki, Toshiaki and Chen, Xinqi and Sawada, Kei}, |
|
url = {https://huggingface.co/rinna/gemma-2-baku-2b} |
|
} |
|
|
|
@inproceedings{sawada2024release, |
|
title = {Release of Pre-Trained Models for the {J}apanese Language}, |
|
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh}, |
|
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)}, |
|
month = {5}, |
|
year = {2024}, |
|
pages = {13898--13905}, |
|
url = {https://aclanthology.org/2024.lrec-main.1213}, |
|
note = {\url{https://arxiv.org/abs/2404.01657}} |
|
} |
|
``` |
|
--- |
|
|
|
# References |
|
```bibtex |
|
@article{gemma-2-2024, |
|
title = {Gemma 2}, |
|
url = {https://www.kaggle.com/models/google/gemma-2}, |
|
publisher = {Kaggle}, |
|
author = {Gemma Team}, |
|
year = {2024} |
|
} |
|
|
|
@misc{litgpt-2023, |
|
author = {Lightning AI}, |
|
title = {LitGPT}, |
|
howpublished = {\url{https://github.com/Lightning-AI/litgpt}}, |
|
year = {2023} |
|
} |
|
``` |
|
--- |
|
|
|
# License |
|
[Gemma Terms of Use](https://ai.google.dev/gemma/terms) |