flanT5_base_Fact_updates

This model is a fine-tuned version of google/flan-t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3672
  • Accuracy: 0.8228
  • Weighted F1: 0.8225
  • Micro F1: 0.8228
  • Macro F1: 0.8193

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Macro F1 Micro F1 Precision Recall Weighted F1 Weighted Precision Weighted Recall
1.0427 0.0282 200 0.6400 [0.7486209613869188, 0.3658051689860835] 0.8832 0.5572 0.6400 [0.6168831168831169, 0.7931034482758621] [0.9519038076152304, 0.23772609819121446] 0.5814 0.6939 0.6400
1.208 0.0564 400 0.6907 [0.7697478991596639, 0.5292096219931272] 1.8381 0.6495 0.6907 [0.662807525325615, 0.7897435897435897] [0.9178356713426854, 0.3979328165374677] 0.6647 0.7183 0.6907
1.6327 0.0847 600 0.6862 [0.765993265993266, 0.523972602739726] 1.3924 0.6450 0.6862 [0.660377358490566, 0.7766497461928934] [0.9118236472945892, 0.3953488372093023] 0.6603 0.7112 0.6862
1.3962 0.1129 800 0.6885 [0.7688442211055276, 0.5224913494809689] 1.7990 0.6457 0.6885 [0.660431654676259, 0.7905759162303665] [0.9198396793587175, 0.39018087855297157] 0.6612 0.7173 0.6885
1.3163 0.1411 1000 0.6862 [0.765993265993266, 0.523972602739726] 1.5711 0.6450 0.6862 [0.660377358490566, 0.7766497461928934] [0.9118236472945892, 0.3953488372093023] 0.6603 0.7112 0.6862
1.1548 0.1693 1200 0.7043 [0.7495219885277247, 0.6391184573002755] 1.6964 0.6943 0.7043 [0.716636197440585, 0.6843657817109144] [0.7855711422845691, 0.599483204134367] 0.7013 0.7025 0.7043
1.0917 0.1976 1400 0.7122 [0.7442326980942828, 0.6709677419354839] 1.6431 0.7076 0.7122 [0.7449799196787149, 0.6701030927835051] [0.7434869739478958, 0.6718346253229974] 0.7122 0.7123 0.7122
1.2556 0.2258 1600 0.6941 [0.775103734439834, 0.5220458553791887] 1.4097 0.6486 0.6941 [0.6614730878186968, 0.8222222222222222] [0.935871743486974, 0.38242894056847543] 0.6646 0.7317 0.6941
1.1785 0.2540 1800 0.6907 [0.7677966101694915, 0.5371621621621622] 1.1850 0.6525 0.6907 [0.6651982378854625, 0.775609756097561] [0.9078156312625251, 0.4108527131782946] 0.6671 0.7134 0.6907
1.2531 0.2822 2000 0.6907 [0.7724252491694352, 0.5176056338028169] 1.1955 0.6450 0.6907 [0.6595744680851063, 0.8121546961325967] [0.9318637274549099, 0.3798449612403101] 0.6611 0.7262 0.6907
0.9859 0.3105 2200 0.7122 [0.7780678851174935, 0.5906902086677368] 1.3978 0.6844 0.7122 [0.6876923076923077, 0.7796610169491526] [0.8957915831663327, 0.4754521963824289] 0.6962 0.7279 0.7122
1.0743 0.3387 2400 0.7156 [0.7769911504424779, 0.6074766355140186] 1.3271 0.6922 0.7156 [0.6957210776545166, 0.7647058823529411] [0.8797595190380761, 0.5038759689922481] 0.7029 0.7259 0.7156
1.1299 0.3669 2600 0.7178 [0.7807017543859649, 0.6044303797468354] 1.1492 0.6926 0.7178 [0.6942277691107644, 0.7795918367346939] [0.8917835671342685, 0.4935400516795866] 0.7037 0.7315 0.7178
0.978 0.3951 2800 0.7427 [0.7760314341846758, 0.6976127320954907] 1.2433 0.7368 0.7427 [0.7610789980732178, 0.7166212534059946] [0.7915831663326653, 0.6795865633074936] 0.7418 0.7417 0.7427
0.9792 0.4234 3000 0.7336 [0.7773584905660378, 0.6685393258426966] 1.1582 0.7229 0.7336 [0.7344028520499108, 0.7323076923076923] [0.8256513026052105, 0.6149870801033591] 0.7298 0.7335 0.7336
0.8484 0.4516 3200 0.7099 [0.7849372384937239, 0.5545927209705372] 1.2349 0.6698 0.7099 [0.6738505747126436, 0.8421052631578947] [0.9398797595190381, 0.4134366925064599] 0.6843 0.7473 0.7099
1.0107 0.4798 3400 0.7325 [0.7603640040444893, 0.6973180076628352] 1.1968 0.7288 0.7325 [0.7673469387755102, 0.6893939393939394] [0.7535070140280561, 0.7054263565891473] 0.7328 0.7333 0.7325
1.0096 0.5080 3600 0.6885 [0.775609756097561, 0.4907749077490775] 1.0334 0.6332 0.6885 [0.652530779753762, 0.8580645161290322] [0.9559118236472945, 0.34366925064599485] 0.6512 0.7423 0.6885
0.9465 0.5363 3800 0.7302 [0.7460148777895855, 0.7123947051744886] 1.1272 0.7292 0.7302 [0.7941176470588235, 0.6666666666666666] [0.7034068136272545, 0.7648578811369509] 0.7313 0.7384 0.7302
0.9628 0.5645 4000 0.7427 [0.7849056603773585, 0.6797752808988764] 1.0353 0.7323 0.7427 [0.7415329768270945, 0.7446153846153846] [0.8336673346693386, 0.6253229974160207] 0.7390 0.7429 0.7427
0.8945 0.5927 4200 0.7438 [0.7930720145852325, 0.6637037037037037] 1.1590 0.7284 0.7438 [0.7274247491638796, 0.7777777777777778] [0.8717434869739479, 0.5788113695090439] 0.7366 0.7494 0.7438
1.0332 0.6209 4400 0.7483 [0.793709528214616, 0.6772793053545586] 1.1790 0.7355 0.7483 [0.7371134020618557, 0.7697368421052632] [0.8597194388777555, 0.6046511627906976] 0.7429 0.7514 0.7483
0.9625 0.6492 4600 0.7641 [0.7992315081652257, 0.7140902872777017] 1.2291 0.7567 0.7641 [0.7675276752767528, 0.7587209302325582] [0.8336673346693386, 0.6744186046511628] 0.7620 0.7637 0.7641
1.0516 0.6774 4800 0.7562 [0.8039927404718693, 0.6776119402985075] 1.0852 0.7408 0.7562 [0.7346600331674958, 0.8021201413427562] [0.8877755511022044, 0.58656330749354] 0.7488 0.7641 0.7562
1.044 0.7056 5000 0.7675 [0.8015414258188824, 0.7193460490463215] 1.0155 0.7604 0.7675 [0.7717996289424861, 0.760806916426513] [0.8336673346693386, 0.6821705426356589] 0.7656 0.7670 0.7675
0.8673 0.7338 5200 1.0519 0.7675 0.7663 0.7675 0.7615
0.9855 0.7621 5400 0.7501 0.7777 0.7708 0.7777 0.7635
0.863 0.7903 5600 0.9434 0.7720 0.7685 0.7720 0.7624
1.0366 0.8185 5800 1.0371 0.7122 0.6780 0.7122 0.6615
0.8824 0.8467 6000 1.0265 0.7619 0.7612 0.7619 0.7567
0.8301 0.8750 6200 1.0980 0.7765 0.7744 0.7765 0.7692
0.9856 0.9032 6400 0.7633 0.7867 0.7825 0.7867 0.7765
0.8429 0.9314 6600 0.9456 0.7743 0.7670 0.7743 0.7594
1.0278 0.9596 6800 0.9540 0.7551 0.7528 0.7551 0.7471
0.9641 0.9879 7000 0.8433 0.7878 0.7831 0.7878 0.7769
0.694 1.0161 7200 1.2788 0.7472 0.7395 0.7472 0.7312
0.7612 1.0443 7400 0.8530 0.8047 0.7982 0.8047 0.7915
0.8366 1.0725 7600 0.8560 0.7991 0.7960 0.7991 0.7906
0.7097 1.1008 7800 0.9766 0.7935 0.7906 0.7935 0.7853
0.9577 1.1290 8000 0.7627 0.7980 0.7966 0.7980 0.7922
0.8404 1.1572 8200 0.8350 0.7968 0.7938 0.7968 0.7885
0.7927 1.1854 8400 0.8045 0.7946 0.7935 0.7946 0.7893
0.8905 1.2137 8600 0.7522 0.8093 0.8058 0.8093 0.8006
0.6972 1.2419 8800 0.9325 0.7968 0.7907 0.7968 0.7840
0.8006 1.2701 9000 0.8882 0.7957 0.7935 0.7957 0.7886
0.6982 1.2983 9200 0.8838 0.8002 0.7959 0.8002 0.7901
0.7914 1.3266 9400 0.7716 0.8059 0.8023 0.8059 0.7969
0.7378 1.3548 9600 0.9446 0.7968 0.7941 0.7968 0.7889
0.9703 1.3830 9800 0.8472 0.7935 0.7873 0.7935 0.7805
0.7271 1.4112 10000 0.9727 0.7991 0.7967 0.7991 0.7918
0.78 1.4395 10200 0.8350 0.7901 0.7827 0.7901 0.7755
0.8381 1.4677 10400 0.8018 0.8036 0.8003 0.8036 0.7950
0.8608 1.4959 10600 0.8652 0.7923 0.7906 0.7923 0.7859
0.688 1.5241 10800 0.9063 0.8036 0.8019 0.8036 0.7975
0.873 1.5524 11000 0.8821 0.8002 0.7972 0.8002 0.7919
0.9033 1.5806 11200 0.8250 0.7991 0.7944 0.7991 0.7883
0.8112 1.6088 11400 0.7788 0.8025 0.7976 0.8025 0.7915
0.6878 1.6370 11600 0.9670 0.8014 0.7970 0.8014 0.7911
0.7777 1.6653 11800 0.9020 0.7968 0.7935 0.7968 0.7881
0.9171 1.6935 12000 0.8787 0.7946 0.7923 0.7946 0.7873
0.8384 1.7217 12200 0.9244 0.7754 0.7752 0.7754 0.7714
0.7736 1.7499 12400 0.8608 0.7980 0.7961 0.7980 0.7914
0.8294 1.7782 12600 0.8227 0.8025 0.8005 0.8025 0.7959
0.8057 1.8064 12800 0.8276 0.7889 0.7883 0.7889 0.7844
0.7318 1.8346 13000 0.8662 0.7867 0.7870 0.7867 0.7840
0.7388 1.8628 13200 0.8807 0.7957 0.7916 0.7957 0.7858
0.7054 1.8911 13400 0.8478 0.8070 0.8045 0.8070 0.7997
0.875 1.9193 13600 0.7832 0.7980 0.7937 0.7980 0.7879
0.692 1.9475 13800 0.9485 0.7968 0.7961 0.7968 0.7921
1.0122 1.9757 14000 0.6915 0.8059 0.8010 0.8059 0.7950
0.613 2.0040 14200 0.8384 0.8115 0.8090 0.8115 0.8042
0.5873 2.0322 14400 0.9702 0.7912 0.7900 0.7912 0.7856
0.5487 2.0604 14600 1.0145 0.8014 0.7986 0.8014 0.7936
0.7213 2.0886 14800 0.8915 0.8070 0.8034 0.8070 0.7980
0.678 2.1169 15000 0.8858 0.8070 0.8045 0.8070 0.7997
0.4698 2.1451 15200 1.1199 0.7923 0.7925 0.7923 0.7894
0.7592 2.1733 15400 0.9553 0.8104 0.8070 0.8104 0.8018
0.6606 2.2015 15600 1.0627 0.7901 0.7875 0.7901 0.7822
0.6252 2.2297 15800 1.0067 0.7923 0.7926 0.7923 0.7895
0.6854 2.2580 16000 0.8288 0.8059 0.8031 0.8059 0.7981
0.7025 2.2862 16200 0.9184 0.8014 0.7985 0.8014 0.7934
0.6804 2.3144 16400 0.9403 0.7957 0.7926 0.7957 0.7872
0.66 2.3426 16600 0.9250 0.8014 0.7995 0.8014 0.7948
0.751 2.3709 16800 0.9244 0.8081 0.8074 0.8081 0.8036
0.6358 2.3991 17000 0.8830 0.8025 0.7996 0.8025 0.7945
0.7491 2.4273 17200 0.8206 0.8093 0.8048 0.8093 0.7991
0.641 2.4555 17400 0.8518 0.8149 0.8110 0.8149 0.8056
0.7503 2.4838 17600 0.9473 0.8081 0.8045 0.8081 0.7991
0.6213 2.5120 17800 0.9772 0.8014 0.7995 0.8014 0.7948
0.5634 2.5402 18000 1.0702 0.8002 0.7989 0.8002 0.7946
0.6771 2.5684 18200 0.9751 0.7980 0.7937 0.7980 0.7879
0.5203 2.5967 18400 0.9834 0.8126 0.8110 0.8126 0.8068
0.6773 2.6249 18600 0.8943 0.8126 0.8105 0.8126 0.8060
0.7521 2.6531 18800 0.8472 0.8138 0.8121 0.8138 0.8079
0.645 2.6813 19000 0.8852 0.8172 0.8165 0.8172 0.8130
0.5444 2.7096 19200 0.9600 0.8081 0.8055 0.8081 0.8006
0.7671 2.7378 19400 0.8624 0.8036 0.8018 0.8036 0.7973
0.7422 2.7660 19600 0.9530 0.8070 0.8042 0.8070 0.7992
0.5092 2.7942 19800 1.0464 0.8183 0.8169 0.8183 0.8128
0.6901 2.8225 20000 0.9704 0.8183 0.8160 0.8183 0.8114
0.6683 2.8507 20200 0.9721 0.8149 0.8137 0.8149 0.8097
0.5067 2.8789 20400 1.0650 0.8104 0.8070 0.8104 0.8018
0.7208 2.9071 20600 0.9588 0.8104 0.8062 0.8104 0.8006
0.5991 2.9354 20800 0.9024 0.8205 0.8178 0.8205 0.8131
0.6839 2.9636 21000 0.9077 0.8093 0.8087 0.8093 0.8051
0.652 2.9918 21200 0.9307 0.8172 0.8161 0.8172 0.8123
0.5023 3.0200 21400 0.9503 0.8262 0.8245 0.8262 0.8205
0.4241 3.0483 21600 1.0769 0.8126 0.8118 0.8126 0.8081
0.5699 3.0765 21800 1.1059 0.8059 0.8055 0.8059 0.8020
0.5996 3.1047 22000 0.9478 0.8149 0.8143 0.8149 0.8108
0.4193 3.1329 22200 1.0867 0.8093 0.8080 0.8093 0.8039
0.4676 3.1612 22400 1.1191 0.8194 0.8184 0.8194 0.8147
0.448 3.1894 22600 1.1390 0.8172 0.8151 0.8172 0.8107
0.4389 3.2176 22800 1.1672 0.8126 0.8117 0.8126 0.8078
0.4062 3.2458 23000 1.1531 0.8205 0.8181 0.8205 0.8136
0.5454 3.2741 23200 1.1332 0.8284 0.8268 0.8284 0.8228
0.605 3.3023 23400 1.0768 0.8172 0.8147 0.8172 0.8100
0.7416 3.3305 23600 0.9257 0.8172 0.8154 0.8172 0.8112
0.3946 3.3587 23800 1.0511 0.8172 0.8144 0.8172 0.8096
0.6225 3.3870 24000 1.1009 0.8138 0.8130 0.8138 0.8093
0.4774 3.4152 24200 1.0590 0.8239 0.8217 0.8239 0.8174
0.3623 3.4434 24400 1.1219 0.8228 0.8212 0.8228 0.8172
0.5161 3.4716 24600 1.0997 0.8273 0.8265 0.8273 0.8231
0.4854 3.4999 24800 0.9759 0.8284 0.8264 0.8284 0.8222
0.5082 3.5281 25000 1.0789 0.8251 0.8228 0.8251 0.8185
0.5719 3.5563 25200 1.0121 0.8149 0.8108 0.8149 0.8054
0.475 3.5845 25400 1.0661 0.8217 0.8202 0.8217 0.8161
0.4861 3.6128 25600 1.0291 0.8228 0.8213 0.8228 0.8174
0.3472 3.6410 25800 1.0936 0.8251 0.8235 0.8251 0.8195
0.5 3.6692 26000 1.0842 0.8217 0.8202 0.8217 0.8163
0.4416 3.6974 26200 1.0122 0.8205 0.8187 0.8205 0.8144
0.5956 3.7257 26400 1.0498 0.8172 0.8163 0.8172 0.8126
0.6085 3.7539 26600 1.0169 0.8217 0.8207 0.8217 0.8170
0.4876 3.7821 26800 1.0093 0.8217 0.8206 0.8217 0.8168
0.3774 3.8103 27000 1.1292 0.8126 0.8122 0.8126 0.8088
0.48 3.8386 27200 1.0578 0.8251 0.8240 0.8251 0.8202
0.4071 3.8668 27400 1.0626 0.8273 0.8256 0.8273 0.8216
0.3274 3.8950 27600 1.1553 0.8205 0.8193 0.8205 0.8155
0.4566 3.9232 27800 1.0869 0.8341 0.8327 0.8341 0.8290
0.5898 3.9515 28000 1.1071 0.8183 0.8178 0.8183 0.8145
0.4661 3.9797 28200 1.2260 0.8183 0.8178 0.8183 0.8143
0.5611 4.0079 28400 1.0554 0.8284 0.8264 0.8284 0.8222
0.3045 4.0361 28600 1.0761 0.8284 0.8276 0.8284 0.8240
0.2848 4.0644 28800 1.3040 0.8138 0.8128 0.8138 0.8089
0.3582 4.0926 29000 1.1999 0.8239 0.8233 0.8239 0.8198
0.1791 4.1208 29200 1.3165 0.8262 0.8249 0.8262 0.8211
0.3963 4.1490 29400 1.3130 0.8160 0.8156 0.8160 0.8123
0.2422 4.1773 29600 1.2456 0.8352 0.8335 0.8352 0.8297
0.4922 4.2055 29800 1.1898 0.8307 0.8294 0.8307 0.8257
0.3682 4.2337 30000 1.1140 0.8318 0.8308 0.8318 0.8272
0.2968 4.2619 30200 1.1722 0.8307 0.8295 0.8307 0.8258
0.5083 4.2901 30400 1.1706 0.8228 0.8225 0.8228 0.8194
0.3826 4.3184 30600 1.2276 0.8194 0.8191 0.8194 0.8158
0.5348 4.3466 30800 1.2370 0.8228 0.8225 0.8228 0.8193
0.4252 4.3748 31000 1.1660 0.8307 0.8296 0.8307 0.8260
0.4772 4.4030 31200 1.1557 0.8318 0.8306 0.8318 0.8269
0.2945 4.4313 31400 1.1913 0.8307 0.8293 0.8307 0.8256
0.3712 4.4595 31600 1.1258 0.8352 0.8336 0.8352 0.8298
0.2715 4.4877 31800 1.1424 0.8330 0.8317 0.8330 0.8280
0.2835 4.5159 32000 1.1789 0.8318 0.8304 0.8318 0.8267
0.3025 4.5442 32200 1.1726 0.8284 0.8276 0.8284 0.8240
0.3259 4.5724 32400 1.2833 0.8205 0.8200 0.8205 0.8165
0.5595 4.6006 32600 1.2895 0.8172 0.8170 0.8172 0.8140
0.3064 4.6288 32800 1.2627 0.8296 0.8288 0.8296 0.8254
0.3127 4.6571 33000 1.2772 0.8307 0.8302 0.8307 0.8270
0.2227 4.6853 33200 1.3326 0.8307 0.8302 0.8307 0.8270
0.1252 4.7135 33400 1.3394 0.8330 0.8320 0.8330 0.8286
0.1683 4.7417 33600 1.3572 0.8341 0.8331 0.8341 0.8296
0.4833 4.7700 33800 1.3697 0.8217 0.8213 0.8217 0.8181
0.3474 4.7982 34000 1.3793 0.8205 0.8203 0.8205 0.8171
0.358 4.8264 34200 1.3703 0.8228 0.8225 0.8228 0.8194
0.1538 4.8546 34400 1.3833 0.8217 0.8213 0.8217 0.8181
0.3807 4.8829 34600 1.3954 0.8217 0.8213 0.8217 0.8181
0.3915 4.9111 34800 1.3835 0.8217 0.8213 0.8217 0.8181
0.4989 4.9393 35000 1.3631 0.8228 0.8225 0.8228 0.8193
0.3053 4.9675 35200 1.3674 0.8228 0.8225 0.8228 0.8193
0.3438 4.9958 35400 1.3672 0.8228 0.8225 0.8228 0.8193

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
223M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rishavranaut/flanT5_base_Fact_updates

Finetuned
(662)
this model