klasifikasiburung

This model is a fine-tuned version of RobertZ2011/resnet-18-birb on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0186
  • Accuracy: 0.7565
  • Precision: 0.7631
  • Recall: 0.7565
  • F1: 0.7554

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.5955 1.0 188 1.4442 0.7235 0.7426 0.7235 0.7169
1.1224 2.0 376 1.2881 0.7458 0.7546 0.7458 0.7406
0.7778 3.0 564 1.1965 0.7501 0.7635 0.7501 0.7483
0.5573 4.0 752 1.1417 0.7565 0.7635 0.7565 0.7538
0.4231 5.0 940 1.1077 0.7584 0.7671 0.7584 0.7567
0.2878 6.0 1128 1.0893 0.7601 0.7716 0.7601 0.7597
0.2043 7.0 1316 1.0688 0.7591 0.7661 0.7591 0.7579
0.1326 8.0 1504 1.0687 0.7582 0.7653 0.7582 0.7565
0.0851 9.0 1692 1.0502 0.7598 0.7652 0.7598 0.7581
0.0807 10.0 1880 1.0318 0.7582 0.7644 0.7582 0.7569
0.0581 11.0 2068 1.0403 0.7572 0.7629 0.7572 0.7558
0.043 12.0 2256 1.0295 0.7565 0.7633 0.7565 0.7557
0.0379 13.0 2444 1.0271 0.7568 0.7636 0.7568 0.7557
0.0399 14.0 2632 1.0319 0.7558 0.7627 0.7558 0.7549
0.0447 15.0 2820 1.0186 0.7565 0.7631 0.7565 0.7554

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
61
Safetensors
Model size
11.3M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for riyadifirman/klasifikasiburung

Finetuned
(4)
this model