File size: 1,925 Bytes
45a5ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
base_model: RobertZ2011/resnet-18-birb
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: klasifikasiburung
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# klasifikasiburung

This model is a fine-tuned version of [RobertZ2011/resnet-18-birb](https://huggingface.co/RobertZ2011/resnet-18-birb) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0513
- Accuracy: 0.7765
- Precision: 0.7801
- Recall: 0.7765
- F1: 0.7734

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.4823        | 1.0   | 375  | 1.3049          | 0.7365   | 0.7549    | 0.7365 | 0.7280 |
| 1.0529        | 2.0   | 750  | 1.1702          | 0.7641   | 0.7706    | 0.7641 | 0.7588 |
| 0.7485        | 3.0   | 1125 | 1.0967          | 0.7689   | 0.7780    | 0.7689 | 0.7662 |
| 0.6476        | 4.0   | 1500 | 1.0676          | 0.7717   | 0.7755    | 0.7717 | 0.7688 |
| 0.4738        | 5.0   | 1875 | 1.0513          | 0.7765   | 0.7801    | 0.7765 | 0.7734 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1