|
--- |
|
license: apache-2.0 |
|
language: |
|
- zh |
|
pipeline_tag: text-generation |
|
tags: |
|
- classical |
|
- guwen |
|
- wenyanwen |
|
- prose |
|
- Ancient poems |
|
--- |
|
|
|
This model mainly focuses on Classical Chinese translation. |
|
|
|
### Usage |
|
|
|
```python |
|
|
|
|
|
model_name = "rkingzhong/qwen2.5-0.5b-classical-chinese-trans" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?" |
|
|
|
messages = [ |
|
{"role": "system", "content": "麻烦帮我翻译下面的文言文,不要出现互联网中的违禁词。"}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
print(response) |
|
``` |