SentenceTransformer based on meta-llama/Llama-3.2-1B
This is a sentence-transformers model finetuned from meta-llama/Llama-3.2-1B. It maps sentences & paragraphs to a 2048-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: meta-llama/Llama-3.2-1B
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 2048 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: LlamaModel
(1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("roboepicss/merged_product_stage_1_llama1B")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 2048]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
ir
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7918 |
cosine_accuracy@3 | 0.9296 |
cosine_accuracy@5 | 0.9589 |
cosine_accuracy@10 | 0.9825 |
cosine_precision@1 | 0.7918 |
cosine_precision@3 | 0.3099 |
cosine_precision@5 | 0.1918 |
cosine_precision@10 | 0.0983 |
cosine_recall@1 | 0.0855 |
cosine_recall@3 | 0.1003 |
cosine_recall@5 | 0.1035 |
cosine_recall@10 | 0.106 |
cosine_ndcg@10 | 0.2064 |
cosine_mrr@10 | 0.8654 |
cosine_map@100 | 0.0935 |
dot_accuracy@1 | 0.7918 |
dot_accuracy@3 | 0.9296 |
dot_accuracy@5 | 0.9589 |
dot_accuracy@10 | 0.9825 |
dot_precision@1 | 0.7918 |
dot_precision@3 | 0.3099 |
dot_precision@5 | 0.1918 |
dot_precision@10 | 0.0983 |
dot_recall@1 | 0.0855 |
dot_recall@3 | 0.1003 |
dot_recall@5 | 0.1035 |
dot_recall@10 | 0.106 |
dot_ndcg@10 | 0.2064 |
dot_mrr@10 | 0.8654 |
dot_map@100 | 0.0935 |
Training Details
Training Logs
Epoch | Step | ir_cosine_map@100 |
---|---|---|
0 | 0 | 0.0935 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
- Downloads last month
- 331
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for roboepicss/merged_product_stage_1_llama1B
Base model
meta-llama/Llama-3.2-1BEvaluation results
- Cosine Accuracy@1 on irself-reported0.792
- Cosine Accuracy@3 on irself-reported0.930
- Cosine Accuracy@5 on irself-reported0.959
- Cosine Accuracy@10 on irself-reported0.983
- Cosine Precision@1 on irself-reported0.792
- Cosine Precision@3 on irself-reported0.310
- Cosine Precision@5 on irself-reported0.192
- Cosine Precision@10 on irself-reported0.098
- Cosine Recall@1 on irself-reported0.085
- Cosine Recall@3 on irself-reported0.100