|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: sshleifer/distilbart-xsum-12-6 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bart-abs-2409-1947-lr-3e-06-bs-2-maxep-6 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-abs-2409-1947-lr-3e-06-bs-2-maxep-6 |
|
|
|
This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 7.7377 |
|
- Rouge/rouge1: 0.3097 |
|
- Rouge/rouge2: 0.0856 |
|
- Rouge/rougel: 0.2463 |
|
- Rouge/rougelsum: 0.2464 |
|
- Bertscore/bertscore-precision: 0.8589 |
|
- Bertscore/bertscore-recall: 0.8656 |
|
- Bertscore/bertscore-f1: 0.8622 |
|
- Meteor: 0.2246 |
|
- Gen Len: 36.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-06 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| |
|
| 0.2033 | 1.0 | 434 | 7.5938 | 0.3097 | 0.0856 | 0.2463 | 0.2464 | 0.8589 | 0.8656 | 0.8622 | 0.2246 | 36.0 | |
|
| 0.2002 | 2.0 | 868 | 7.6593 | 0.3097 | 0.0856 | 0.2463 | 0.2464 | 0.8589 | 0.8656 | 0.8622 | 0.2246 | 36.0 | |
|
| 0.1987 | 3.0 | 1302 | 7.6900 | 0.3097 | 0.0856 | 0.2463 | 0.2464 | 0.8589 | 0.8656 | 0.8622 | 0.2246 | 36.0 | |
|
| 0.1973 | 4.0 | 1736 | 7.7234 | 0.3097 | 0.0856 | 0.2463 | 0.2464 | 0.8589 | 0.8656 | 0.8622 | 0.2246 | 36.0 | |
|
| 0.1975 | 5.0 | 2170 | 7.7388 | 0.3097 | 0.0856 | 0.2463 | 0.2464 | 0.8589 | 0.8656 | 0.8622 | 0.2246 | 36.0 | |
|
| 0.2146 | 6.0 | 2604 | 7.7377 | 0.3097 | 0.0856 | 0.2463 | 0.2464 | 0.8589 | 0.8656 | 0.8622 | 0.2246 | 36.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|