roequitz's picture
End of training
bc593bd verified
---
library_name: transformers
license: apache-2.0
base_model: sshleifer/distilbart-xsum-12-6
tags:
- generated_from_trainer
model-index:
- name: bart-abs-2409-1947-lr-3e-06-bs-2-maxep-6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-abs-2409-1947-lr-3e-06-bs-2-maxep-6
This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 7.7377
- Rouge/rouge1: 0.3097
- Rouge/rouge2: 0.0856
- Rouge/rougel: 0.2463
- Rouge/rougelsum: 0.2464
- Bertscore/bertscore-precision: 0.8589
- Bertscore/bertscore-recall: 0.8656
- Bertscore/bertscore-f1: 0.8622
- Meteor: 0.2246
- Gen Len: 36.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:|
| 0.2033 | 1.0 | 434 | 7.5938 | 0.3097 | 0.0856 | 0.2463 | 0.2464 | 0.8589 | 0.8656 | 0.8622 | 0.2246 | 36.0 |
| 0.2002 | 2.0 | 868 | 7.6593 | 0.3097 | 0.0856 | 0.2463 | 0.2464 | 0.8589 | 0.8656 | 0.8622 | 0.2246 | 36.0 |
| 0.1987 | 3.0 | 1302 | 7.6900 | 0.3097 | 0.0856 | 0.2463 | 0.2464 | 0.8589 | 0.8656 | 0.8622 | 0.2246 | 36.0 |
| 0.1973 | 4.0 | 1736 | 7.7234 | 0.3097 | 0.0856 | 0.2463 | 0.2464 | 0.8589 | 0.8656 | 0.8622 | 0.2246 | 36.0 |
| 0.1975 | 5.0 | 2170 | 7.7388 | 0.3097 | 0.0856 | 0.2463 | 0.2464 | 0.8589 | 0.8656 | 0.8622 | 0.2246 | 36.0 |
| 0.2146 | 6.0 | 2604 | 7.7377 | 0.3097 | 0.0856 | 0.2463 | 0.2464 | 0.8589 | 0.8656 | 0.8622 | 0.2246 | 36.0 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 3.0.0
- Tokenizers 0.19.1