gemma-finetuning

This model is a fine-tuned version of google/gemma-2b on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1674

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training Hardware

Intel(R) Data Center GPU Max 1100

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • training_steps: 593

Training results

Training Loss Epoch Step Validation Loss
2.8606 0.82 100 2.5425
2.4479 1.64 200 2.3304
2.3077 2.46 300 2.2351
2.2398 3.28 400 2.1914
2.2083 4.1 500 2.1674

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.3
  • Pytorch 2.0.1a0+cxx11.abi
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for rppadmakumar/gemma-2b-finetuned

Base model

google/gemma-2b
Adapter
(23540)
this model