rtilman/bert-base-cased-finetuned-swag
This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.3811
- Train Accuracy: 0.8585
- Validation Loss: 0.6156
- Validation Accuracy: 0.7775
- Epoch: 1
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 9192, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.8650 | 0.6491 | 0.6211 | 0.7589 | 0 |
0.3811 | 0.8585 | 0.6156 | 0.7775 | 1 |
Framework versions
- Transformers 4.33.2
- TensorFlow 2.13.0
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 4
Inference API (serverless) does not yet support transformers models for this pipeline type.
Model tree for rtilman/bert-base-cased-finetuned-swag
Base model
google-bert/bert-base-cased