ruanchaves's picture
Upload README.md with huggingface_hub
e244d58
---
inference: false
language: pt
datasets:
- ruanchaves/faquad-nli
---
# BERTimbau large for Question Answering
This is the [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) model finetuned for
Text Simplification with the [FaQUaD-NLI](https://huggingface.co/ruanchaves/faquad-nli) dataset.
This model is suitable for Portuguese.
- Git Repo: [Evaluation of Portuguese Language Models](https://github.com/ruanchaves/eplm).
- Demo: [Hugging Face Space: Question Answering](https://ruanchaves-portuguese-text-simplification.hf.space)
### **Labels**:
* 0 : The answer is not suitable for the provided question.
* 1 : The answer is suitable for the provided question.
## Full classification example
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
import numpy as np
import torch
from scipy.special import softmax
model_name = "ruanchaves/bert-large-portuguese-cased-faquad-nli"
s1 = "Qual a montanha mais alta do mundo?"
s2 = "Monte Everest é a montanha mais alta do mundo."
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
model_input = tokenizer(*([s1], [s2]), padding=True, return_tensors="pt")
with torch.no_grad():
output = model(**model_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
l = config.id2label[ranking[i]]
s = scores[ranking[i]]
print(f"{i+1}) Label: {l} Score: {np.round(float(s), 4)}")
```
## Citation
Our research is ongoing, and we are currently working on describing our experiments in a paper, which will be published soon.
In the meanwhile, if you would like to cite our work or models before the publication of the paper, please cite our [GitHub repository](https://github.com/ruanchaves/eplm):
```
@software{Chaves_Rodrigues_eplm_2023,
author = {Chaves Rodrigues, Ruan and Tanti, Marc and Agerri, Rodrigo},
doi = {10.5281/zenodo.7781848},
month = {3},
title = {{Evaluation of Portuguese Language Models}},
url = {https://github.com/ruanchaves/eplm},
version = {1.0.0},
year = {2023}
}
```