clip-vit-l-14-pmc-finetuned

This model is a fine-tuned version of openai/clip-vit-large-patch14 on an pmc_oa (https://huggingface.co/datasets/axiong/pmc_oa) dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1
  • Datasets 2.14.4
  • Tokenizers 0.13.3

finetune this model use the script from run_clip.py (https://github.com/huggingface/transformers/tree/main/examples/pytorch/contrastive-image-text)


python -W ignore run_clip.py --model_name_or_path openai/clip-vit-large-patch14 \
      --output_dir ./clip-vit-l-14-pmc-finetuned \
      --train_file data/pmc_roco_train.csv \
      --validation_file data/pmc_roco_valid.csv \
      --image_column image --caption_column caption \
      --max_seq_length 77 \
      --do_train --do_eval \
      --per_device_train_batch_size 16 --per_device_eval_batch_size 8 \
      --remove_unused_columns=False \
      --learning_rate="5e-5" --warmup_steps="0" --weight_decay 0.1 \
      --overwrite_output_dir  \
      --num_train_epochs 10 \
      --logging_dir ./pmc_vit_logs \
      --save_total_limit 2 \
      --report_to  tensorboard

usage

from PIL import Image
import requests

from transformers import CLIPProcessor, CLIPModel

model = CLIPModel.from_pretrained("ryanyip7777/pmc_vit-l-14_hf")
processor = CLIPProcessor.from_pretrained("ryanyip7777/pmc_vit-l-14_hf")

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)

outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ryanyip7777/pmc_vit-l-14_hf

Finetuned
(52)
this model