metadata
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
metrics:
- rmse
library_name: pytorch
datasets:
- gvlassis/california_housing
pipeline_tag: tabular-regression
mlp-california-housing
A multi-layer perceptron (MLP) trained on the California Housing dataset.
It takes eight inputs: 'MedInc'
, 'HouseAge'
, 'AveRooms'
, 'AveBedrms'
, 'Population'
, 'AveOccup'
, 'Latitude'
and 'Longitude'
. It predicts 'MedHouseVal'
.
It is a PyTorch adaptation of the TensorFlow model in Chapter 10 of Aurelien Geron's book 'Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow'.
Experiment tracking: https://wandb.ai/sadhaklal/mlp-california-housing
Usage
Metric
RMSE on the test set: 0.5502
This model has been pushed to the Hub using the PyTorchModelHubMixin integration.