sajidof's picture
End of training
04954cf verified
|
raw
history blame
2.07 kB
metadata
license: apache-2.0
base_model: AntonyG/fine-tune-wav2vec2-large-xls-r-1b-sw
tags:
  - generated_from_trainer
datasets:
  - ml-superb-subset
metrics:
  - wer
model-index:
  - name: fine-tune-wav2vec2-large-xls-r-300m-xty_224s
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: ml-superb-subset
          type: ml-superb-subset
          config: xty
          split: test[:100]
          args: xty
        metrics:
          - name: Wer
            type: wer
            value: 0.8007542426147077

fine-tune-wav2vec2-large-xls-r-300m-xty_224s

This model is a fine-tuned version of AntonyG/fine-tune-wav2vec2-large-xls-r-1b-sw on the ml-superb-subset dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2894
  • Wer: 0.8008

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.356 5.5172 400 1.8297 0.9478
0.9415 11.0345 800 1.7935 0.8485
0.2658 16.5517 1200 2.2894 0.8008

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1