metadata
license: apache-2.0
base_model: AntonyG/fine-tune-wav2vec2-large-xls-r-1b-sw
tags:
- generated_from_trainer
datasets:
- ml-superb-subset
metrics:
- wer
model-index:
- name: fine-tune-wav2vec2-large-xls-r-300m-xty_224s
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ml-superb-subset
type: ml-superb-subset
config: xty
split: test[:100]
args: xty
metrics:
- name: Wer
type: wer
value: 0.8007542426147077
fine-tune-wav2vec2-large-xls-r-300m-xty_224s
This model is a fine-tuned version of AntonyG/fine-tune-wav2vec2-large-xls-r-1b-sw on the ml-superb-subset dataset. It achieves the following results on the evaluation set:
- Loss: 2.2894
- Wer: 0.8008
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.356 | 5.5172 | 400 | 1.8297 | 0.9478 |
0.9415 | 11.0345 | 800 | 1.7935 | 0.8485 |
0.2658 | 16.5517 | 1200 | 2.2894 | 0.8008 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1