sajidof's picture
End of training
a3fa0b0 verified
metadata
tags:
  - generated_from_trainer
datasets:
  - ml-superb-subset
metrics:
  - wer
model-index:
  - name: fine-tune-wav2vec2-large-xls-r-300m-xty_224s
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: ml-superb-subset
          type: ml-superb-subset
          config: xty
          split: test[:100]
          args: xty
        metrics:
          - name: Wer
            type: wer
            value: 1.0584538026398491

fine-tune-wav2vec2-large-xls-r-300m-xty_224s

This model was trained from scratch on the ml-superb-subset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7658
  • Wer: 1.0585

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.5419 5.5172 400 0.4368 0.9994
0.423 11.0345 800 0.4315 1.0
0.3795 16.5517 1200 0.3892 1.0151
0.3306 22.0690 1600 0.4055 1.0013
0.2464 27.5862 2000 0.4672 1.0421
0.1454 33.1034 2400 0.6656 1.0333
0.0883 38.6207 2800 0.7658 1.0585

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1