|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
# **Introduction** |
|
We introduce luxia-21.4b-alignment-v1.0, an instruction-tuned and alignment model based on luxia-21.4b. |
|
Please refer to the evaluation results table for details. |
|
|
|
# **Instruction Fine-tuning Strategy** |
|
We utilize state-of-the-art instruction fine-tuning methods including supervised fine-tuning (SFT) and direct preference optimization (DPO) |
|
|
|
# **Data Contamination Test Results** |
|
Results will be updated soon. |
|
|
|
# **Evaluation Results** |
|
Results will be updated soon. |
|
|
|
|
|
# **Usage Instructions** |
|
|
|
### **How to use** |
|
```python |
|
# pip install transformers==4.35.2 |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("saltlux/luxia-21.4b-alignment-v1.0") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"saltlux/luxia-21.4b-alignment-v1.0", |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
``` |
|
|
|
### **License** |
|
- [saltlux/luxia-21.4b-alignment-v1.0](https://huggingface.co/saltlux/luxia-21.4b-alignment-v1.0): apache-2.0 |
|
|
|
|
|
### **Contact Us** ### |
|
Any questions and suggestions are welcomed at the discussion tab. |