sarahwei's picture
Update README.md
154c17d verified
|
raw
history blame
2.79 kB
metadata
license: apache-2.0
language:
  - en
base_model: bencyc1129/mitre-bert-base-cased
pipeline_tag: text-classification
widget:
  - text: An attacker performs a SQL injection.

MITRE-tactic-bert-case-based

It's a fine-tuned model from mitre-bert-base-cased on the MITRE version 13 procedure dataset. It achieves

  • loss:0.057
  • accuracy:0.87

on evaluation dataset.

Intended uses & limitations

You can use the fine-tuned model for text classification. It aims to identify the tactic that the sentence belongs to in MITRE ATT&CK framework. A sentence or an attack may fall into several tactics.

Note that this model is primarily fine-tuned on text classification for cybersecurity. It may not perform well if the sentence is not related to attacks.

How to use

You can use the model with Tensorflow.

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model_id = "sarahwei/MITRE-tactic-bert-case-based"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    # device_map="auto",
)
question = 'An attacker performs a SQL injection.'
input_ids = tokenizer(question,return_tensors="pt")
outputs = model(**input_ids)
logits = outputs.logits
sigmoid = torch.nn.Sigmoid()
probs = sigmoid(logits.squeeze().cpu())
predictions = np.zeros(probs.shape)
predictions[np.where(probs >= 0.5)] = 1
predicted_labels = [model.config.id2label[idx] for idx, label in enumerate(predictions) if label == 1.0]

Training procedure

Training parameter

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 0
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • warmup_ratio: 0.01
  • weight_decay: 0.001

Training results

Step Training Loss Validation Loss F1 Roc AUC accuracy
100 0.409400 0.142982 0.740000 0.803830 0.610000
200 0.106500 0.093503 0.818182 0.868382 0.720000
300 0.070200 0.065937 0.893617 0.930366 0.810000
400 0.045500 0.061865 0.892704 0.926625 0.830000
500 0.033600 0.057814 0.902954 0.938630 0.860000
600 0.026000 0.062982 0.894515 0.934107 0.840000
700 0.021900 0.056275 0.904564 0.946113 0.870000
800 0.017700 0.061058 0.887967 0.937067 0.860000
900 0.016100 0.058965 0.890756 0.933716 0.870000
1000 0.014200 0.055885 0.903766 0.942372 0.880000
1100 0.013200 0.056888 0.895397 0.937849 0.880000
1200 0.012700 0.057484 0.895397 0.937849 0.870000