from transformers import BertConfig, BertForSequenceClassification, BertTokenizer
from datasets import load_dataset
from transformers import pipeline
import pandas as pd

model = BertForSequenceClassification.from_pretrained("sartajbhuvaji/gutenberg-bert-base-uncased")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

# Create a text classification pipeline
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, device='cuda')

# Test the pipeline
result = classifier("This is a great book!")
print(result) #[{'label': 'LABEL_8', 'score': 0.2576160430908203}]

# Test the pipeline on a document
dataset = load_dataset("sartajbhuvaji/gutenberg", split="100")
df = dataset.to_pandas()

doc_id = 1
doc_text = df.loc[df['DocID'] == doc_id, 'Text'].values[0]

result = classifier(doc_text[:512])  # Truncate to 512 tokens
print(result) # [{'label': 'LABEL_2', 'score': 0.28877997398376465}]
Downloads last month
2
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sartajbhuvaji/gutenberg-bert-base-uncased

Finetuned
(2361)
this model

Dataset used to train sartajbhuvaji/gutenberg-bert-base-uncased