from transformers import BertConfig, BertForSequenceClassification, BertTokenizer
from datasets import load_dataset
from transformers import pipeline
import pandas as pd
model = BertForSequenceClassification.from_pretrained("sartajbhuvaji/gutenberg-bert-base-uncased")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# Create a text classification pipeline
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, device='cuda')
# Test the pipeline
result = classifier("This is a great book!")
print(result) #[{'label': 'LABEL_8', 'score': 0.2576160430908203}]
# Test the pipeline on a document
dataset = load_dataset("sartajbhuvaji/gutenberg", split="100")
df = dataset.to_pandas()
doc_id = 1
doc_text = df.loc[df['DocID'] == doc_id, 'Text'].values[0]
result = classifier(doc_text[:512]) # Truncate to 512 tokens
print(result) # [{'label': 'LABEL_2', 'score': 0.28877997398376465}]
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for sartajbhuvaji/gutenberg-bert-base-uncased
Base model
google-bert/bert-base-uncased