gemma-sft-qlora

This model is a fine-tuned version of google/gemma-7b on the satpalsr/hindi-sample dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.1537 0.99 94 1.0988
0.9028 1.99 189 0.8056
0.6553 2.99 284 0.6577
0.4936 3.96 376 0.6385

Framework versions

  • PEFT 0.7.1
  • Transformers 4.38.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.2
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for satpalsr/gemma-sft-qlora

Base model

google/gemma-7b
Adapter
(9170)
this model