Flux DreamBooth LoRA - sayakpaul/yarn_art_lora_flux_nf4

Model description

These are sayakpaul/yarn_art_lora_flux_nf4 DreamBooth LoRA weights for black-forest-labs/FLUX.1-dev.

The weights were trained using DreamBooth with the Flux diffusers trainer.

Was LoRA for the text encoder enabled? False.

Trained with quantization: Yes.

Quantization config:

BitsAndBytesConfig {
  "_load_in_4bit": true,
  "_load_in_8bit": false,
  "bnb_4bit_compute_dtype": "bfloat16",
  "bnb_4bit_quant_storage": "uint8",
  "bnb_4bit_quant_type": "nf4",
  "bnb_4bit_use_double_quant": false,
  "llm_int8_enable_fp32_cpu_offload": false,
  "llm_int8_has_fp16_weight": false,
  "llm_int8_skip_modules": null,
  "llm_int8_threshold": 6.0,
  "load_in_4bit": true,
  "load_in_8bit": false,
  "quant_method": "bitsandbytes"
}

To know more on how this was trained, follow: https://gist.github.com/sayakpaul/05afd428bc089b47af7c016e42004527.

Trigger words

You should use a puppy, yarn art style to trigger the image generation.

Download model

Download the *.safetensors LoRA in the Files & versions tab.

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image, FluxTransformer2DModel, BitsAndBytesConfig
import torch

ckpt_id = "black-forest-labs/FLUX.1-dev"
bnb_4bit_compute_dtype = torch.bfloat16
nf4_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=bnb_4bit_compute_dtype,
)
transformer = FluxTransformer2DModel.from_pretrained(
    ckpt_id, 
    subfolder="transformer", 
    quantization_config=nf4_config,
    torch_dtype=bnb_4bit_compute_dtype,
)
pipeline = AutoPipelineForText2Image.from_pretrained(
    ckpt_id, transformer=transformer, torch_dtype=torch.bfloat16
)
pipeline.load_lora_weights("yarn_art_lora_flux_nf4", weight_name="pytorch_lora_weights.safetensors")

pipeline.fuse_lora()
pipeline.unload_lora_weights()
pipeline.enable_model_cpu_offload()

image = pipeline("a puppy in a pond, yarn art style", guidance_scale=3.5, height=768).images[0]
image.save("yarn.png")

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

License

Please adhere to the licensing terms as described here.

Intended uses & limitations

How to use

# TODO: add an example code snippet for running this diffusion pipeline

Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

Training details

[TODO: describe the data used to train the model]

Downloads last month
8
Inference API
Examples

Model tree for sayakpaul/yarn_art_lora_flux_nf4

Adapter
(13853)
this model