ScaleDown-7B-slerp-v0.1
This model is a merge of the following models made with mergekit:
🧩 Configuration
slices:
- sources:
- model: OpenPipe/mistral-ft-optimized-1218
layer_range: [0, 32]
- model: jondurbin/bagel-dpo-7b-v0.1
layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1218
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 71.57 |
AI2 Reasoning Challenge (25-Shot) | 68.00 |
HellaSwag (10-Shot) | 85.70 |
MMLU (5-Shot) | 65.26 |
TruthfulQA (0-shot) | 61.90 |
Winogrande (5-shot) | 81.37 |
GSM8k (5-shot) | 67.17 |
- Downloads last month
- 817
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for scaledown/ScaleDown-7B-slerp-v0.1
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard68.000
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.700
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard65.260
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard61.900
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard81.370
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard67.170