|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- diffusion model |
|
- stable diffusion |
|
- SCEdit |
|
- Scepter |
|
- Scepter studio |
|
- Controllable |
|
- ControlNet |
|
- Lora |
|
--- |
|
<p align="center"><h2 align="center">馃獎SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing</h2> </p> |
|
<p align="center"> |
|
<strong>Zeyinzi Jiang</strong> |
|
路 |
|
<strong>Chaojie Mao</strong> |
|
路 |
|
<strong>Yulin Pan</strong> |
|
路 |
|
<strong>Zhen Han</strong> |
|
路 |
|
<strong>Jingfeng Zhang</strong> |
|
</p> |
|
|
|
<div align="center"> |
|
|
|
[**Paper (ArXiv)**](https://arxiv.org/abs/2312.11392) **|** [**Project Page**](https://scedit.github.io/) **|** [**Code**](https://github.com/modelscope/scepter)**|** [**Swift**](https://github.com/modelscope/swift) |
|
</div> |
|
|
|
<p align="center"> |
|
<b>Alibaba Group</b> |
|
</p> |
|
|
|
<p> |
|
<table align="center"> |
|
<tr> |
|
<td> |
|
<img src="assets/figures/show.jpg"> |
|
</td> |
|
</tr> |
|
</table> |
|
</p> |
|
|
|
|
|
|
|
SCEdit is an efficient generative fine-tuning framework proposed by Alibaba TongYi Vision Intelligence Lab. This framework enhances the fine-tuning capabilities for text-to-image generation downstream tasks and enables quick adaptation to specific generative scenarios, **saving 30%-50% of training memory costs compared to LoRA**. Furthermore, it can be directly extended to controllable image generation tasks, **requiring only 7.9% of the parameters that ControlNet needs for conditional generation and saving 30% of memory usage**. It supports various conditional generation tasks including edge maps, depth maps, segmentation maps, poses, color maps, and image completion. |
|
#### Use Models |
|
```shell |
|
pip install scepter |
|
python -m scepter.tools.webui |
|
``` |
|
|
|
## BibTeX |
|
|
|
```bibtex |
|
@article{jiang2023scedit, |
|
title = {SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing}, |
|
author = {Jiang, Zeyinzi and Mao, Chaojie and Pan, Yulin and Han, Zhen and Zhang, Jingfeng}, |
|
year = {2023}, |
|
journal = {arXiv preprint arXiv:2312.11392} |
|
} |
|
``` |