bert-small-ipadic_bpe

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6777
  • Accuracy: 0.6519

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • total_train_batch_size: 768
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 14
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2548 1.0 69473 2.1163 0.5882
2.0904 2.0 138946 1.9562 0.6101
2.0203 3.0 208419 1.8848 0.6208
1.978 4.0 277892 1.8408 0.6272
1.937 5.0 347365 1.8080 0.6320
1.9152 6.0 416838 1.7818 0.6361
1.8982 7.0 486311 1.7575 0.6395
1.8808 8.0 555784 1.7413 0.6421
1.8684 9.0 625257 1.7282 0.6440
1.8517 10.0 694730 1.7140 0.6464
1.8353 11.0 764203 1.7022 0.6481
1.8245 12.0 833676 1.6877 0.6504
1.8191 13.0 903149 1.6829 0.6515
1.8122 14.0 972622 1.6777 0.6519

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.12.0+cu116
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.