mmlw-e5-small / README.md
sdadas's picture
Update README.md
bd5a404 verified
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb
model-index:
- name: mmlw-e5-small
results:
- task:
type: Clustering
dataset:
type: PL-MTEB/8tags-clustering
name: MTEB 8TagsClustering
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 31.772224277808153
- task:
type: Classification
dataset:
type: PL-MTEB/allegro-reviews
name: MTEB AllegroReviews
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 33.03180914512922
- type: f1
value: 29.800304217426167
- task:
type: Retrieval
dataset:
type: arguana-pl
name: MTEB ArguAna-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 28.804999999999996
- type: map_at_10
value: 45.327
- type: map_at_100
value: 46.17
- type: map_at_1000
value: 46.177
- type: map_at_3
value: 40.528999999999996
- type: map_at_5
value: 43.335
- type: mrr_at_1
value: 30.299
- type: mrr_at_10
value: 45.763
- type: mrr_at_100
value: 46.641
- type: mrr_at_1000
value: 46.648
- type: mrr_at_3
value: 41.074
- type: mrr_at_5
value: 43.836999999999996
- type: ndcg_at_1
value: 28.804999999999996
- type: ndcg_at_10
value: 54.308
- type: ndcg_at_100
value: 57.879000000000005
- type: ndcg_at_1000
value: 58.048
- type: ndcg_at_3
value: 44.502
- type: ndcg_at_5
value: 49.519000000000005
- type: precision_at_1
value: 28.804999999999996
- type: precision_at_10
value: 8.286
- type: precision_at_100
value: 0.984
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 18.682000000000002
- type: precision_at_5
value: 13.627
- type: recall_at_1
value: 28.804999999999996
- type: recall_at_10
value: 82.85900000000001
- type: recall_at_100
value: 98.36399999999999
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 56.04599999999999
- type: recall_at_5
value: 68.137
- task:
type: Classification
dataset:
type: PL-MTEB/cbd
name: MTEB CBD
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 64.24
- type: ap
value: 17.967103105024705
- type: f1
value: 52.97375416129459
- task:
type: PairClassification
dataset:
type: PL-MTEB/cdsce-pairclassification
name: MTEB CDSC-E
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 88.8
- type: cos_sim_ap
value: 76.68028778789487
- type: cos_sim_f1
value: 66.82352941176471
- type: cos_sim_precision
value: 60.42553191489362
- type: cos_sim_recall
value: 74.73684210526315
- type: dot_accuracy
value: 88.1
- type: dot_ap
value: 72.04910086070551
- type: dot_f1
value: 66.66666666666667
- type: dot_precision
value: 69.31818181818183
- type: dot_recall
value: 64.21052631578948
- type: euclidean_accuracy
value: 88.8
- type: euclidean_ap
value: 76.63591858340688
- type: euclidean_f1
value: 67.13286713286713
- type: euclidean_precision
value: 60.25104602510461
- type: euclidean_recall
value: 75.78947368421053
- type: manhattan_accuracy
value: 88.9
- type: manhattan_ap
value: 76.54552849815124
- type: manhattan_f1
value: 66.66666666666667
- type: manhattan_precision
value: 60.51502145922747
- type: manhattan_recall
value: 74.21052631578947
- type: max_accuracy
value: 88.9
- type: max_ap
value: 76.68028778789487
- type: max_f1
value: 67.13286713286713
- task:
type: STS
dataset:
type: PL-MTEB/cdscr-sts
name: MTEB CDSC-R
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 91.64169404461497
- type: cos_sim_spearman
value: 91.9755161377078
- type: euclidean_pearson
value: 90.87481478491249
- type: euclidean_spearman
value: 91.92362666383987
- type: manhattan_pearson
value: 90.8415510499638
- type: manhattan_spearman
value: 91.85927127194698
- task:
type: Retrieval
dataset:
type: dbpedia-pl
name: MTEB DBPedia-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.148
- type: map_at_10
value: 12.870999999999999
- type: map_at_100
value: 18.04
- type: map_at_1000
value: 19.286
- type: map_at_3
value: 9.156
- type: map_at_5
value: 10.857999999999999
- type: mrr_at_1
value: 53.25
- type: mrr_at_10
value: 61.016999999999996
- type: mrr_at_100
value: 61.48400000000001
- type: mrr_at_1000
value: 61.507999999999996
- type: mrr_at_3
value: 58.75
- type: mrr_at_5
value: 60.375
- type: ndcg_at_1
value: 41.0
- type: ndcg_at_10
value: 30.281000000000002
- type: ndcg_at_100
value: 33.955999999999996
- type: ndcg_at_1000
value: 40.77
- type: ndcg_at_3
value: 34.127
- type: ndcg_at_5
value: 32.274
- type: precision_at_1
value: 52.5
- type: precision_at_10
value: 24.525
- type: precision_at_100
value: 8.125
- type: precision_at_1000
value: 1.728
- type: precision_at_3
value: 37.083
- type: precision_at_5
value: 32.15
- type: recall_at_1
value: 6.148
- type: recall_at_10
value: 17.866
- type: recall_at_100
value: 39.213
- type: recall_at_1000
value: 61.604000000000006
- type: recall_at_3
value: 10.084
- type: recall_at_5
value: 13.333999999999998
- task:
type: Retrieval
dataset:
type: fiqa-pl
name: MTEB FiQA-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 14.643
- type: map_at_10
value: 23.166
- type: map_at_100
value: 24.725
- type: map_at_1000
value: 24.92
- type: map_at_3
value: 20.166
- type: map_at_5
value: 22.003
- type: mrr_at_1
value: 29.630000000000003
- type: mrr_at_10
value: 37.632
- type: mrr_at_100
value: 38.512
- type: mrr_at_1000
value: 38.578
- type: mrr_at_3
value: 35.391
- type: mrr_at_5
value: 36.857
- type: ndcg_at_1
value: 29.166999999999998
- type: ndcg_at_10
value: 29.749
- type: ndcg_at_100
value: 35.983
- type: ndcg_at_1000
value: 39.817
- type: ndcg_at_3
value: 26.739
- type: ndcg_at_5
value: 27.993000000000002
- type: precision_at_1
value: 29.166999999999998
- type: precision_at_10
value: 8.333
- type: precision_at_100
value: 1.448
- type: precision_at_1000
value: 0.213
- type: precision_at_3
value: 17.747
- type: precision_at_5
value: 13.58
- type: recall_at_1
value: 14.643
- type: recall_at_10
value: 35.247
- type: recall_at_100
value: 59.150999999999996
- type: recall_at_1000
value: 82.565
- type: recall_at_3
value: 24.006
- type: recall_at_5
value: 29.383
- task:
type: Retrieval
dataset:
type: hotpotqa-pl
name: MTEB HotpotQA-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.627
- type: map_at_10
value: 48.041
- type: map_at_100
value: 49.008
- type: map_at_1000
value: 49.092999999999996
- type: map_at_3
value: 44.774
- type: map_at_5
value: 46.791
- type: mrr_at_1
value: 65.28
- type: mrr_at_10
value: 72.53500000000001
- type: mrr_at_100
value: 72.892
- type: mrr_at_1000
value: 72.909
- type: mrr_at_3
value: 71.083
- type: mrr_at_5
value: 71.985
- type: ndcg_at_1
value: 65.253
- type: ndcg_at_10
value: 57.13700000000001
- type: ndcg_at_100
value: 60.783
- type: ndcg_at_1000
value: 62.507000000000005
- type: ndcg_at_3
value: 52.17
- type: ndcg_at_5
value: 54.896
- type: precision_at_1
value: 65.253
- type: precision_at_10
value: 12.088000000000001
- type: precision_at_100
value: 1.496
- type: precision_at_1000
value: 0.172
- type: precision_at_3
value: 32.96
- type: precision_at_5
value: 21.931
- type: recall_at_1
value: 32.627
- type: recall_at_10
value: 60.439
- type: recall_at_100
value: 74.80799999999999
- type: recall_at_1000
value: 86.219
- type: recall_at_3
value: 49.44
- type: recall_at_5
value: 54.827999999999996
- task:
type: Retrieval
dataset:
type: msmarco-pl
name: MTEB MSMARCO-PL
config: default
split: validation
revision: None
metrics:
- type: map_at_1
value: 13.150999999999998
- type: map_at_10
value: 21.179000000000002
- type: map_at_100
value: 22.227
- type: map_at_1000
value: 22.308
- type: map_at_3
value: 18.473
- type: map_at_5
value: 19.942999999999998
- type: mrr_at_1
value: 13.467
- type: mrr_at_10
value: 21.471
- type: mrr_at_100
value: 22.509
- type: mrr_at_1000
value: 22.585
- type: mrr_at_3
value: 18.789
- type: mrr_at_5
value: 20.262
- type: ndcg_at_1
value: 13.539000000000001
- type: ndcg_at_10
value: 25.942999999999998
- type: ndcg_at_100
value: 31.386999999999997
- type: ndcg_at_1000
value: 33.641
- type: ndcg_at_3
value: 20.368
- type: ndcg_at_5
value: 23.003999999999998
- type: precision_at_1
value: 13.539000000000001
- type: precision_at_10
value: 4.249
- type: precision_at_100
value: 0.7040000000000001
- type: precision_at_1000
value: 0.09
- type: precision_at_3
value: 8.782
- type: precision_at_5
value: 6.6049999999999995
- type: recall_at_1
value: 13.150999999999998
- type: recall_at_10
value: 40.698
- type: recall_at_100
value: 66.71000000000001
- type: recall_at_1000
value: 84.491
- type: recall_at_3
value: 25.452
- type: recall_at_5
value: 31.791000000000004
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pl)
config: pl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.3537323470074
- type: f1
value: 64.67852047603644
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pl)
config: pl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.12508406186953
- type: f1
value: 71.55887309568853
- task:
type: Retrieval
dataset:
type: nfcorpus-pl
name: MTEB NFCorpus-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.18
- type: map_at_10
value: 9.524000000000001
- type: map_at_100
value: 12.272
- type: map_at_1000
value: 13.616
- type: map_at_3
value: 6.717
- type: map_at_5
value: 8.172
- type: mrr_at_1
value: 37.152
- type: mrr_at_10
value: 45.068000000000005
- type: mrr_at_100
value: 46.026
- type: mrr_at_1000
value: 46.085
- type: mrr_at_3
value: 43.344
- type: mrr_at_5
value: 44.412
- type: ndcg_at_1
value: 34.52
- type: ndcg_at_10
value: 27.604
- type: ndcg_at_100
value: 26.012999999999998
- type: ndcg_at_1000
value: 35.272
- type: ndcg_at_3
value: 31.538
- type: ndcg_at_5
value: 30.165999999999997
- type: precision_at_1
value: 36.223
- type: precision_at_10
value: 21.053
- type: precision_at_100
value: 7.08
- type: precision_at_1000
value: 1.9929999999999999
- type: precision_at_3
value: 30.031000000000002
- type: precision_at_5
value: 26.997
- type: recall_at_1
value: 4.18
- type: recall_at_10
value: 12.901000000000002
- type: recall_at_100
value: 27.438000000000002
- type: recall_at_1000
value: 60.768
- type: recall_at_3
value: 7.492
- type: recall_at_5
value: 10.05
- task:
type: Retrieval
dataset:
type: nq-pl
name: MTEB NQ-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.965
- type: map_at_10
value: 28.04
- type: map_at_100
value: 29.217
- type: map_at_1000
value: 29.285
- type: map_at_3
value: 24.818
- type: map_at_5
value: 26.617
- type: mrr_at_1
value: 20.22
- type: mrr_at_10
value: 30.148000000000003
- type: mrr_at_100
value: 31.137999999999998
- type: mrr_at_1000
value: 31.19
- type: mrr_at_3
value: 27.201999999999998
- type: mrr_at_5
value: 28.884999999999998
- type: ndcg_at_1
value: 20.365
- type: ndcg_at_10
value: 33.832
- type: ndcg_at_100
value: 39.33
- type: ndcg_at_1000
value: 41.099999999999994
- type: ndcg_at_3
value: 27.46
- type: ndcg_at_5
value: 30.584
- type: precision_at_1
value: 20.365
- type: precision_at_10
value: 5.849
- type: precision_at_100
value: 0.8959999999999999
- type: precision_at_1000
value: 0.107
- type: precision_at_3
value: 12.64
- type: precision_at_5
value: 9.334000000000001
- type: recall_at_1
value: 17.965
- type: recall_at_10
value: 49.503
- type: recall_at_100
value: 74.351
- type: recall_at_1000
value: 87.766
- type: recall_at_3
value: 32.665
- type: recall_at_5
value: 39.974
- task:
type: Classification
dataset:
type: laugustyniak/abusive-clauses-pl
name: MTEB PAC
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 63.11323486823051
- type: ap
value: 74.53486257377787
- type: f1
value: 60.631005373417736
- task:
type: PairClassification
dataset:
type: PL-MTEB/ppc-pairclassification
name: MTEB PPC
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 80.10000000000001
- type: cos_sim_ap
value: 89.69526236458292
- type: cos_sim_f1
value: 83.37468982630274
- type: cos_sim_precision
value: 83.30578512396694
- type: cos_sim_recall
value: 83.44370860927152
- type: dot_accuracy
value: 77.8
- type: dot_ap
value: 87.72366051496104
- type: dot_f1
value: 82.83752860411899
- type: dot_precision
value: 76.80339462517681
- type: dot_recall
value: 89.90066225165563
- type: euclidean_accuracy
value: 80.10000000000001
- type: euclidean_ap
value: 89.61317191870039
- type: euclidean_f1
value: 83.40214698596202
- type: euclidean_precision
value: 83.19604612850083
- type: euclidean_recall
value: 83.6092715231788
- type: manhattan_accuracy
value: 79.60000000000001
- type: manhattan_ap
value: 89.48363786968471
- type: manhattan_f1
value: 82.96296296296296
- type: manhattan_precision
value: 82.48772504091653
- type: manhattan_recall
value: 83.44370860927152
- type: max_accuracy
value: 80.10000000000001
- type: max_ap
value: 89.69526236458292
- type: max_f1
value: 83.40214698596202
- task:
type: PairClassification
dataset:
type: PL-MTEB/psc-pairclassification
name: MTEB PSC
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 96.93877551020408
- type: cos_sim_ap
value: 98.86489482248999
- type: cos_sim_f1
value: 95.11111111111113
- type: cos_sim_precision
value: 92.507204610951
- type: cos_sim_recall
value: 97.86585365853658
- type: dot_accuracy
value: 95.73283858998145
- type: dot_ap
value: 97.8261652492545
- type: dot_f1
value: 93.21533923303835
- type: dot_precision
value: 90.28571428571428
- type: dot_recall
value: 96.34146341463415
- type: euclidean_accuracy
value: 96.93877551020408
- type: euclidean_ap
value: 98.84837797066623
- type: euclidean_f1
value: 95.11111111111113
- type: euclidean_precision
value: 92.507204610951
- type: euclidean_recall
value: 97.86585365853658
- type: manhattan_accuracy
value: 96.84601113172542
- type: manhattan_ap
value: 98.78659090944161
- type: manhattan_f1
value: 94.9404761904762
- type: manhattan_precision
value: 92.73255813953489
- type: manhattan_recall
value: 97.2560975609756
- type: max_accuracy
value: 96.93877551020408
- type: max_ap
value: 98.86489482248999
- type: max_f1
value: 95.11111111111113
- task:
type: Classification
dataset:
type: PL-MTEB/polemo2_in
name: MTEB PolEmo2.0-IN
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 63.961218836565095
- type: f1
value: 64.3979989243291
- task:
type: Classification
dataset:
type: PL-MTEB/polemo2_out
name: MTEB PolEmo2.0-OUT
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 40.32388663967612
- type: f1
value: 32.339117999015755
- task:
type: Retrieval
dataset:
type: quora-pl
name: MTEB Quora-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 62.757
- type: map_at_10
value: 76.55999999999999
- type: map_at_100
value: 77.328
- type: map_at_1000
value: 77.35499999999999
- type: map_at_3
value: 73.288
- type: map_at_5
value: 75.25500000000001
- type: mrr_at_1
value: 72.28
- type: mrr_at_10
value: 79.879
- type: mrr_at_100
value: 80.121
- type: mrr_at_1000
value: 80.12700000000001
- type: mrr_at_3
value: 78.40700000000001
- type: mrr_at_5
value: 79.357
- type: ndcg_at_1
value: 72.33000000000001
- type: ndcg_at_10
value: 81.151
- type: ndcg_at_100
value: 83.107
- type: ndcg_at_1000
value: 83.397
- type: ndcg_at_3
value: 77.3
- type: ndcg_at_5
value: 79.307
- type: precision_at_1
value: 72.33000000000001
- type: precision_at_10
value: 12.587000000000002
- type: precision_at_100
value: 1.488
- type: precision_at_1000
value: 0.155
- type: precision_at_3
value: 33.943
- type: precision_at_5
value: 22.61
- type: recall_at_1
value: 62.757
- type: recall_at_10
value: 90.616
- type: recall_at_100
value: 97.905
- type: recall_at_1000
value: 99.618
- type: recall_at_3
value: 79.928
- type: recall_at_5
value: 85.30499999999999
- task:
type: Retrieval
dataset:
type: scidocs-pl
name: MTEB SCIDOCS-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.313
- type: map_at_10
value: 8.559999999999999
- type: map_at_100
value: 10.177999999999999
- type: map_at_1000
value: 10.459999999999999
- type: map_at_3
value: 6.094
- type: map_at_5
value: 7.323
- type: mrr_at_1
value: 16.3
- type: mrr_at_10
value: 25.579
- type: mrr_at_100
value: 26.717000000000002
- type: mrr_at_1000
value: 26.799
- type: mrr_at_3
value: 22.583000000000002
- type: mrr_at_5
value: 24.298000000000002
- type: ndcg_at_1
value: 16.3
- type: ndcg_at_10
value: 14.789
- type: ndcg_at_100
value: 21.731
- type: ndcg_at_1000
value: 27.261999999999997
- type: ndcg_at_3
value: 13.74
- type: ndcg_at_5
value: 12.199
- type: precision_at_1
value: 16.3
- type: precision_at_10
value: 7.779999999999999
- type: precision_at_100
value: 1.79
- type: precision_at_1000
value: 0.313
- type: precision_at_3
value: 12.933
- type: precision_at_5
value: 10.86
- type: recall_at_1
value: 3.313
- type: recall_at_10
value: 15.772
- type: recall_at_100
value: 36.392
- type: recall_at_1000
value: 63.525
- type: recall_at_3
value: 7.863
- type: recall_at_5
value: 11.003
- task:
type: PairClassification
dataset:
type: PL-MTEB/sicke-pl-pairclassification
name: MTEB SICK-E-PL
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 81.7977986139421
- type: cos_sim_ap
value: 73.21294750778902
- type: cos_sim_f1
value: 66.57391304347826
- type: cos_sim_precision
value: 65.05778382053025
- type: cos_sim_recall
value: 68.16239316239316
- type: dot_accuracy
value: 78.67916836526702
- type: dot_ap
value: 63.61943815978181
- type: dot_f1
value: 62.45014245014245
- type: dot_precision
value: 52.04178537511871
- type: dot_recall
value: 78.06267806267806
- type: euclidean_accuracy
value: 81.7774154097024
- type: euclidean_ap
value: 73.25053778387148
- type: euclidean_f1
value: 66.55064392620953
- type: euclidean_precision
value: 65.0782845473111
- type: euclidean_recall
value: 68.09116809116809
- type: manhattan_accuracy
value: 81.63473298002447
- type: manhattan_ap
value: 72.99781945530033
- type: manhattan_f1
value: 66.3623595505618
- type: manhattan_precision
value: 65.4432132963989
- type: manhattan_recall
value: 67.3076923076923
- type: max_accuracy
value: 81.7977986139421
- type: max_ap
value: 73.25053778387148
- type: max_f1
value: 66.57391304347826
- task:
type: STS
dataset:
type: PL-MTEB/sickr-pl-sts
name: MTEB SICK-R-PL
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 79.62332929388755
- type: cos_sim_spearman
value: 73.70598290849304
- type: euclidean_pearson
value: 77.3603286710006
- type: euclidean_spearman
value: 73.74420279933932
- type: manhattan_pearson
value: 77.12735032552482
- type: manhattan_spearman
value: 73.53014836690127
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (pl)
config: pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 37.696942928686724
- type: cos_sim_spearman
value: 40.6271445245692
- type: euclidean_pearson
value: 30.212734461370832
- type: euclidean_spearman
value: 40.66643376699638
- type: manhattan_pearson
value: 29.90223716230108
- type: manhattan_spearman
value: 40.35576319091178
- task:
type: Retrieval
dataset:
type: scifact-pl
name: MTEB SciFact-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 43.528
- type: map_at_10
value: 53.290000000000006
- type: map_at_100
value: 54.342
- type: map_at_1000
value: 54.376999999999995
- type: map_at_3
value: 50.651999999999994
- type: map_at_5
value: 52.248000000000005
- type: mrr_at_1
value: 46.666999999999994
- type: mrr_at_10
value: 55.286
- type: mrr_at_100
value: 56.094
- type: mrr_at_1000
value: 56.125
- type: mrr_at_3
value: 53.222
- type: mrr_at_5
value: 54.339000000000006
- type: ndcg_at_1
value: 46.0
- type: ndcg_at_10
value: 58.142
- type: ndcg_at_100
value: 62.426
- type: ndcg_at_1000
value: 63.395999999999994
- type: ndcg_at_3
value: 53.53
- type: ndcg_at_5
value: 55.842000000000006
- type: precision_at_1
value: 46.0
- type: precision_at_10
value: 7.9670000000000005
- type: precision_at_100
value: 1.023
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 21.444
- type: precision_at_5
value: 14.333000000000002
- type: recall_at_1
value: 43.528
- type: recall_at_10
value: 71.511
- type: recall_at_100
value: 89.93299999999999
- type: recall_at_1000
value: 97.667
- type: recall_at_3
value: 59.067
- type: recall_at_5
value: 64.789
- task:
type: Retrieval
dataset:
type: trec-covid-pl
name: MTEB TRECCOVID-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.22699999999999998
- type: map_at_10
value: 1.3379999999999999
- type: map_at_100
value: 6.965000000000001
- type: map_at_1000
value: 17.135
- type: map_at_3
value: 0.53
- type: map_at_5
value: 0.799
- type: mrr_at_1
value: 84.0
- type: mrr_at_10
value: 88.083
- type: mrr_at_100
value: 88.432
- type: mrr_at_1000
value: 88.432
- type: mrr_at_3
value: 87.333
- type: mrr_at_5
value: 87.833
- type: ndcg_at_1
value: 76.0
- type: ndcg_at_10
value: 58.199
- type: ndcg_at_100
value: 43.230000000000004
- type: ndcg_at_1000
value: 39.751
- type: ndcg_at_3
value: 63.743
- type: ndcg_at_5
value: 60.42999999999999
- type: precision_at_1
value: 84.0
- type: precision_at_10
value: 62.0
- type: precision_at_100
value: 44.519999999999996
- type: precision_at_1000
value: 17.746000000000002
- type: precision_at_3
value: 67.333
- type: precision_at_5
value: 63.2
- type: recall_at_1
value: 0.22699999999999998
- type: recall_at_10
value: 1.627
- type: recall_at_100
value: 10.600999999999999
- type: recall_at_1000
value: 37.532
- type: recall_at_3
value: 0.547
- type: recall_at_5
value: 0.864
language: pl
license: apache-2.0
widget:
- source_sentence: "query: Jak dożyć 100 lat?"
sentences:
- "passage: Trzeba zdrowo się odżywiać i uprawiać sport."
- "passage: Trzeba pić alkohol, imprezować i jeździć szybkimi autami."
- "passage: Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
---
<h1 align="center">MMLW-e5-small</h1>
MMLW (muszę mieć lepszą wiadomość) are neural text encoders for Polish.
This is a distilled model that can be used to generate embeddings applicable to many tasks such as semantic similarity, clustering, information retrieval. The model can also serve as a base for further fine-tuning.
It transforms texts to 384 dimensional vectors.
The model was initialized with multilingual E5 checkpoint, and then trained with [multilingual knowledge distillation method](https://aclanthology.org/2020.emnlp-main.365/) on a diverse corpus of 60 million Polish-English text pairs. We utilised [English FlagEmbeddings (BGE)](https://huggingface.co/BAAI/bge-base-en) as teacher models for distillation.
## Usage (Sentence-Transformers)
⚠️ Our embedding models require the use of specific prefixes and suffixes when encoding texts. For this model, queries should be prefixed with **"query: "** and passages with **"passage: "** ⚠️
You can use the model like this with [sentence-transformers](https://www.SBERT.net):
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
query_prefix = "query: "
answer_prefix = "passage: "
queries = [query_prefix + "Jak dożyć 100 lat?"]
answers = [
answer_prefix + "Trzeba zdrowo się odżywiać i uprawiać sport.",
answer_prefix + "Trzeba pić alkohol, imprezować i jeździć szybkimi autami.",
answer_prefix + "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
]
model = SentenceTransformer("sdadas/mmlw-e5-small")
queries_emb = model.encode(queries, convert_to_tensor=True, show_progress_bar=False)
answers_emb = model.encode(answers, convert_to_tensor=True, show_progress_bar=False)
best_answer = cos_sim(queries_emb, answers_emb).argmax().item()
print(answers[best_answer])
# Trzeba zdrowo się odżywiać i uprawiać sport.
```
## Evaluation Results
- The model achieves an **Average Score** of **55.84** on the Polish Massive Text Embedding Benchmark (MTEB). See [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) for detailed results.
- The model achieves **NDCG@10** of **47.64** on the Polish Information Retrieval Benchmark. See [PIRB Leaderboard](https://huggingface.co/spaces/sdadas/pirb) for detailed results.
## Acknowledgements
This model was trained with the A100 GPU cluster support delivered by the Gdansk University of Technology within the TASK center initiative.
## Citation
```bibtex
@article{dadas2024pirb,
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
year={2024},
eprint={2402.13350},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```