Model Card: Time-Conditioned U-Net for MNIST
Model Details
- Architecture: Time-Conditioned U-Net
- Dataset: Comic Faces Paired Synthetic
- Batch Size: 256
- Image Size: 28x28
- Loss Function: Mean Squared Error (MSE)
- Optimizer: Adam (learning rate = 1e-4)
Model Architecture
This model is a U-Net-based neural network that incorporates time conditioning using sinusoidal embeddings and an MLP. The architecture is designed for small grayscale images (e.g., MNIST) and consists of:
Encoder (Contracting Path):
- Downsampling using three
DoubleConv
layers with 32, 64, and 128 channels, respectively. - Time embedding added at each convolution block.
- Max pooling used to reduce spatial dimensions.
Decoder (Expanding Path):
- Upsampling via bilinear interpolation.
- Skip connections from encoder layers to corresponding decoder layers.
- Two
DoubleConv
layers with 128+64 and 64+32 channels, respectively. - Final
1x1
convolution to map to the output.
Time Embedding:
- Uses a sinusoidal positional encoding to represent timestep information.
- An MLP refines the embedding before passing it to convolutional layers.
Implementation
Generator (U-Net)
class UNet(nn.Module, PyTorchModelHubMixin):
def __init__(self, in_channels=1, out_channels=1, time_embedding_dim=32):
super(UNet, self).__init__()
# Time embedding layer
self.time_embedding = TimeEmbedding(time_embedding_dim)
# Encoder
self.down_conv1 = DoubleConv(in_channels, 32, time_embedding_dim)
self.down_conv2 = DoubleConv(32, 64, time_embedding_dim)
self.down_conv3 = DoubleConv(64, 128, time_embedding_dim)
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
# Decoder
self.up_conv2 = DoubleConv(128 + 64, 64, time_embedding_dim)
self.up_conv1 = DoubleConv(64 + 32, 32, time_embedding_dim)
self.final_conv = nn.Conv2d(32, out_channels, kernel_size=1)
def forward(self, x, timesteps):
t = self.time_embedding(timesteps)
x1 = self.down_conv1(x, t)
x2 = self.down_conv2(self.maxpool(x1), t)
x3 = self.down_conv3(self.maxpool(x2), t)
x = self.upsample(x3)
x = torch.cat([x2, x], dim=1)
x = self.up_conv2(x, t)
x = self.upsample(x)
x = torch.cat([x1, x], dim=1)
x = self.up_conv1(x, t)
return self.final_conv(x)
Time Embedding
class TimeEmbedding(nn.Module):
def __init__(self, embedding_dim):
super().__init__()
self.mlp = nn.Sequential(
nn.SiLU(),
nn.Linear(embedding_dim, embedding_dim),
)
def forward(self, t):
half_dim = self.embedding_dim // 2
embeddings = torch.exp(torch.arange(half_dim, device=t.device) * -(torch.log(torch.tensor(10000.0)) / (half_dim - 1)))
embeddings = t[:, None] * embeddings[None, :]
embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
return self.mlp(embeddings)
Training Configuration
- Batch Size: 256
- Image Size: 28x28
- Loss Function: Mean Squared Error (MSE)
- Optimizer: Adam (learning rate = 1e-4)
This model has been pushed to the Hub using the PytorchModelHubMixin integration:
- Library: [More Information Needed]
- Docs: [More Information Needed]
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.