ChatAllInOne-Yi-34B-200K-V1-GGUF
Original Model
DrNicefellow/ChatAllInOne-Yi-34B-200K-V1
Run with LlamaEdge
LlamaEdge version: coming soon
Prompt template
Prompt type:
vicuna-1.1-chat
Prompt string
USER: {prompt} ASSISTANT:
Context size:
7168
Quantized GGUF Models
Name | Quant method | Bits | Size | Use case |
---|---|---|---|---|
ChatAllInOne-Yi-34B-200K-V1-Q2_K.gguf | Q2_K | 2 | 12.8 GB | smallest, significant quality loss - not recommended for most purposes |
ChatAllInOne-Yi-34B-200K-V1-Q3_K_L.gguf | Q3_K_L | 3 | 18.1 GB | small, substantial quality loss |
ChatAllInOne-Yi-34B-200K-V1-Q3_K_M.gguf | Q3_K_M | 3 | 16.7 GB | very small, high quality loss |
ChatAllInOne-Yi-34B-200K-V1-Q3_K_S.gguf | Q3_K_S | 3 | 15 GB | very small, high quality loss |
ChatAllInOne-Yi-34B-200K-V1-Q4_0.gguf | Q4_0 | 4 | 19.5 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
ChatAllInOne-Yi-34B-200K-V1-Q4_K_M.gguf | Q4_K_M | 4 | 20.7 GB | medium, balanced quality - recommended |
ChatAllInOne-Yi-34B-200K-V1-Q4_K_S.gguf | Q4_K_S | 4 | 19.6 GB | small, greater quality loss |
ChatAllInOne-Yi-34B-200K-V1-Q5_0.gguf | Q5_0 | 5 | 23.7 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
ChatAllInOne-Yi-34B-200K-V1-Q5_K_M.gguf | Q5_K_M | 5 | 24.3 GB | large, very low quality loss - recommended |
ChatAllInOne-Yi-34B-200K-V1-Q5_K_S.gguf | Q5_K_S | 5 | 23.7 GB | large, low quality loss - recommended |
ChatAllInOne-Yi-34B-200K-V1-Q6_K.gguf | Q6_K | 6 | 28.2 GB | very large, extremely low quality loss |
ChatAllInOne-Yi-34B-200K-V1-Q8_0.gguf | Q8_0 | 8 | 36.5 GB | very large, extremely low quality loss - not recommended |
Quantized with llama.cpp b2334
- Downloads last month
- 73
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for second-state/ChatAllInOne-Yi-34B-200K-V1-GGUF
Base model
DrNicefellow/ChatAllInOne-Yi-34B-200K-V1