apepkuss79's picture
Update README.md
240d6f7 verified
|
raw
history blame
4.27 kB
metadata
base_model: jinaai/jina-embeddings-v2-base-de
license: apache-2.0
model_creator: jinaai
quantized_by: Second State Inc.
language:
  - de
  - en
inference: false

jina-embeddings-v2-base-de-GGUF

Original Model

jinaai/jina-embeddings-v2-base-de

Run with LlamaEdge

  • LlamaEdge version: v0.14.17

  • Prompt template

    • Prompt type: embedding
  • Context size: 8192

  • Embedding dim: 768

  • Run as LlamaEdge service

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:jina-embeddings-v2-base-de-f16.gguf \
      llama-api-server.wasm \
      --prompt-template embedding \
      --ctx-size 8192 \
      --model-name jina-embeddings-v2-base-de
    

Quantized GGUF Models

Name Quant method Bits Size Use case
jina-embeddings-v2-base-de-Q2_K.gguf Q2_K 2 82.5 MB smallest, significant quality loss - not recommended for most purposes
jina-embeddings-v2-base-de-Q3_K_L.gguf Q3_K_L 3 101 MB small, substantial quality loss
jina-embeddings-v2-base-de-Q3_K_M.gguf Q3_K_M 3 95.5 MB very small, high quality loss
jina-embeddings-v2-base-de-Q3_K_S.gguf Q3_K_S 3 89.7 MB very small, high quality loss
jina-embeddings-v2-base-de-Q4_0.gguf Q4_0 4 105 MB legacy; small, very high quality loss - prefer using Q3_K_M
jina-embeddings-v2-base-de-Q4_K_M.gguf Q4_K_M 4 109 MB medium, balanced quality - recommended
jina-embeddings-v2-base-de-Q4_K_S.gguf Q4_K_S 4 105 MB small, greater quality loss
jina-embeddings-v2-base-de-Q5_0.gguf Q5_0 5 119 MB legacy; medium, balanced quality - prefer using Q4_K_M
jina-embeddings-v2-base-de-Q5_K_M.gguf Q5_K_M 5 121 MB large, very low quality loss - recommended
jina-embeddings-v2-base-de-Q5_K_S.gguf Q5_K_S 5 119 MB large, low quality loss - recommended
jina-embeddings-v2-base-de-Q6_K.gguf Q6_K 6 134 MB very large, extremely low quality loss
jina-embeddings-v2-base-de-Q8_0.gguf Q8_0 8 173 MB very large, extremely low quality loss - not recommended
jina-embeddings-v2-base-de-f16.gguf f16 16 323 MB very large, extremely low quality loss - not recommended

Quantized with llama.cpp b4273