Model Summary

Phi2_med_seg is a fine-tuned version of the Phi-2 model, specifically optimized for medical applications. This model has been trained using the Trainer framework on several different datasets from the MedAlpaca collection, which focuses on medical question answering and conversational AI. This model can answer information about different excplicit ideas in medicine

How to Get Started with the Model

Sample Code

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

base_model_id = "microsoft/phi-2"
base_model = AutoModelForCausalLM.from_pretrained(
    base_model_id,  # Phi2, same as before
    device_map="auto",
    trust_remote_code=True,
    load_in_8bit=True,
    torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
eval_tokenizer = AutoTokenizer.from_pretrained(base_model_id, add_bos_token=True, trust_remote_code=True, use_fast=False)
eval_tokenizer.pad_token = tokenizer.eos_token

from peft import PeftModel

adapter_model_id = "segestic/phi2_medical_seg"
ft_model = PeftModel.from_pretrained(base_model, adapter_model_id)

eval_prompt = "What is medicine?"
model_input = eval_tokenizer(eval_prompt, return_tensors="pt").to("cuda")

ft_model.eval()
with torch.no_grad():
    print(eval_tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=100, repetition_penalty=1.11)[0], skip_special_tokens=True))

Training

The fine-tuning process involved leveraging various medical datasets to enhance the model's ability to understand and generate relevant medical information. This approach aims to improve the model's performance in medical contexts, making it a valuable tool for healthcare professionals and researchers alike. By utilizing the Trainer framework, Phi2_med_seg benefits from advanced training techniques that help refine its responses and accuracy in medical scenarios.

Model

  • Architecture: a Transformer-based model with next-word prediction objective

  • Context length: 2048 tokens

Software

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for segestic/phi2_medical_seg

Base model

microsoft/phi-2
Finetuned
(289)
this model

Datasets used to train segestic/phi2_medical_seg