local_distilbert_finetune_model

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2154
  • Precision: 0.5
  • Recall: 0.5
  • F1: 0.5
  • Accuracy: 0.9231

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 1 0.8718 0.0 0.0 0.0 0.7692
No log 2.0 2 0.8088 0.0 0.0 0.0 0.7692
No log 3.0 3 0.7507 0.0 0.0 0.0 0.7692
No log 4.0 4 0.6957 0.0 0.0 0.0 0.7692
No log 5.0 5 0.6445 0.0 0.0 0.0 0.7692
No log 6.0 6 0.5982 0.0 0.0 0.0 0.7692
No log 7.0 7 0.5559 0.0 0.0 0.0 0.7692
No log 8.0 8 0.5177 0.0 0.0 0.0 0.7692
No log 9.0 9 0.4832 0.0 0.0 0.0 0.8462
No log 10.0 10 0.4523 0.5 0.5 0.5 0.9231
No log 11.0 11 0.4243 0.5 0.5 0.5 0.9231
No log 12.0 12 0.3996 0.5 0.5 0.5 0.9231
No log 13.0 13 0.3778 0.5 0.5 0.5 0.9231
No log 14.0 14 0.3592 0.5 0.5 0.5 0.9231
No log 15.0 15 0.3428 0.5 0.5 0.5 0.9231
No log 16.0 16 0.3293 0.5 0.5 0.5 0.9231
No log 17.0 17 0.3180 0.5 0.5 0.5 0.9231
No log 18.0 18 0.3087 0.5 0.5 0.5 0.9231
No log 19.0 19 0.3003 0.5 0.5 0.5 0.9231
No log 20.0 20 0.2933 0.5 0.5 0.5 0.9231
No log 21.0 21 0.2865 0.5 0.5 0.5 0.9231
No log 22.0 22 0.2807 0.5 0.5 0.5 0.9231
No log 23.0 23 0.2755 0.5 0.5 0.5 0.9231
No log 24.0 24 0.2689 0.5 0.5 0.5 0.9231
No log 25.0 25 0.2628 0.5 0.5 0.5 0.9231
No log 26.0 26 0.2573 0.5 0.5 0.5 0.9231
No log 27.0 27 0.2528 0.5 0.5 0.5 0.9231
No log 28.0 28 0.2487 0.5 0.5 0.5 0.9231
No log 29.0 29 0.2451 0.5 0.5 0.5 0.9231
No log 30.0 30 0.2420 0.5 0.5 0.5 0.9231
No log 31.0 31 0.2392 0.5 0.5 0.5 0.9231
No log 32.0 32 0.2363 0.5 0.5 0.5 0.9231
No log 33.0 33 0.2335 0.5 0.5 0.5 0.9231
No log 34.0 34 0.2310 0.5 0.5 0.5 0.9231
No log 35.0 35 0.2288 0.5 0.5 0.5 0.9231
No log 36.0 36 0.2267 0.5 0.5 0.5 0.9231
No log 37.0 37 0.2247 0.5 0.5 0.5 0.9231
No log 38.0 38 0.2230 0.5 0.5 0.5 0.9231
No log 39.0 39 0.2216 0.5 0.5 0.5 0.9231
No log 40.0 40 0.2205 0.5 0.5 0.5 0.9231
No log 41.0 41 0.2196 0.5 0.5 0.5 0.9231
No log 42.0 42 0.2187 0.5 0.5 0.5 0.9231
No log 43.0 43 0.2180 0.5 0.5 0.5 0.9231
No log 44.0 44 0.2173 0.5 0.5 0.5 0.9231
No log 45.0 45 0.2168 0.5 0.5 0.5 0.9231
No log 46.0 46 0.2163 0.5 0.5 0.5 0.9231
No log 47.0 47 0.2159 0.5 0.5 0.5 0.9231
No log 48.0 48 0.2157 0.5 0.5 0.5 0.9231
No log 49.0 49 0.2155 0.5 0.5 0.5 0.9231
No log 50.0 50 0.2154 0.5 0.5 0.5 0.9231

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
7
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for senthil2002/local_distilbert_finetune_model

Finetuned
(7276)
this model