ZNV-Embedding / README.md
jionglin
add MassiveIntentClassification and MassiveScenarioClassification
ef3cc86
|
raw
history blame
33.4 kB
metadata
tags:
  - mteb
model-index:
  - name: data1
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: b44c3b011063adb25877c13823db83bb193913c4
        metrics:
          - type: cos_sim_pearson
            value: 53.66919706568301
          - type: cos_sim_spearman
            value: 53.84074348656974
          - type: euclidean_pearson
            value: 53.58226184439896
          - type: euclidean_spearman
            value: 53.84074348656974
          - type: manhattan_pearson
            value: 53.64565834381205
          - type: manhattan_spearman
            value: 53.75526003581371
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
        metrics:
          - type: cos_sim_pearson
            value: 58.123744893539495
          - type: cos_sim_spearman
            value: 54.44277675493291
          - type: euclidean_pearson
            value: 61.20550691770944
          - type: euclidean_spearman
            value: 54.44277225170509
          - type: manhattan_pearson
            value: 60.57835645653918
          - type: manhattan_spearman
            value: 54.46153709699013
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 29.746
          - type: f1
            value: 29.039321522193585
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
        metrics:
          - type: cos_sim_pearson
            value: 70.7026320728244
          - type: cos_sim_spearman
            value: 70.57218534128499
          - type: euclidean_pearson
            value: 69.28488221289881
          - type: euclidean_spearman
            value: 70.57218534192015
          - type: manhattan_pearson
            value: 69.65344674392082
          - type: manhattan_spearman
            value: 70.64136691477553
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
        metrics:
          - type: v_measure
            value: 38.87791994762536
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
        metrics:
          - type: v_measure
            value: 39.09103599244803
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
        metrics:
          - type: map
            value: 80.40249793910444
          - type: mrr
            value: 82.96805555555555
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: 23d186750531a14a0357ca22cd92d712fd512ea0
        metrics:
          - type: map
            value: 80.39046823499085
          - type: mrr
            value: 83.22674603174602
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 15.715000000000002
          - type: map_at_10
            value: 24.651
          - type: map_at_100
            value: 26.478
          - type: map_at_1000
            value: 26.648
          - type: map_at_3
            value: 21.410999999999998
          - type: map_at_5
            value: 23.233
          - type: mrr_at_1
            value: 24.806
          - type: mrr_at_10
            value: 32.336
          - type: mrr_at_100
            value: 33.493
          - type: mrr_at_1000
            value: 33.568999999999996
          - type: mrr_at_3
            value: 29.807
          - type: mrr_at_5
            value: 31.294
          - type: ndcg_at_1
            value: 24.806
          - type: ndcg_at_10
            value: 30.341
          - type: ndcg_at_100
            value: 38.329
          - type: ndcg_at_1000
            value: 41.601
          - type: ndcg_at_3
            value: 25.655
          - type: ndcg_at_5
            value: 27.758
          - type: precision_at_1
            value: 24.806
          - type: precision_at_10
            value: 7.119000000000001
          - type: precision_at_100
            value: 1.3679999999999999
          - type: precision_at_1000
            value: 0.179
          - type: precision_at_3
            value: 14.787
          - type: precision_at_5
            value: 11.208
          - type: recall_at_1
            value: 15.715000000000002
          - type: recall_at_10
            value: 39.519999999999996
          - type: recall_at_100
            value: 73.307
          - type: recall_at_1000
            value: 95.611
          - type: recall_at_3
            value: 26.026
          - type: recall_at_5
            value: 32.027
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
        metrics:
          - type: cos_sim_accuracy
            value: 66.89116055321708
          - type: cos_sim_ap
            value: 75.66575745519994
          - type: cos_sim_f1
            value: 70.2448775612194
          - type: cos_sim_precision
            value: 61.347765363128495
          - type: cos_sim_recall
            value: 82.16039279869068
          - type: dot_accuracy
            value: 66.89116055321708
          - type: dot_ap
            value: 75.68262052264197
          - type: dot_f1
            value: 70.2448775612194
          - type: dot_precision
            value: 61.347765363128495
          - type: dot_recall
            value: 82.16039279869068
          - type: euclidean_accuracy
            value: 66.89116055321708
          - type: euclidean_ap
            value: 75.66576722188334
          - type: euclidean_f1
            value: 70.2448775612194
          - type: euclidean_precision
            value: 61.347765363128495
          - type: euclidean_recall
            value: 82.16039279869068
          - type: manhattan_accuracy
            value: 67.03547805171377
          - type: manhattan_ap
            value: 75.78816934864089
          - type: manhattan_f1
            value: 70.35407081416284
          - type: manhattan_precision
            value: 61.4752665617899
          - type: manhattan_recall
            value: 82.23053542202479
          - type: max_accuracy
            value: 67.03547805171377
          - type: max_ap
            value: 75.78816934864089
          - type: max_f1
            value: 70.35407081416284
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 41.57
          - type: map_at_10
            value: 52.932
          - type: map_at_100
            value: 53.581999999999994
          - type: map_at_1000
            value: 53.61900000000001
          - type: map_at_3
            value: 50.066
          - type: map_at_5
            value: 51.735
          - type: mrr_at_1
            value: 41.623
          - type: mrr_at_10
            value: 52.964999999999996
          - type: mrr_at_100
            value: 53.6
          - type: mrr_at_1000
            value: 53.637
          - type: mrr_at_3
            value: 50.158
          - type: mrr_at_5
            value: 51.786
          - type: ndcg_at_1
            value: 41.623
          - type: ndcg_at_10
            value: 58.55200000000001
          - type: ndcg_at_100
            value: 61.824999999999996
          - type: ndcg_at_1000
            value: 62.854
          - type: ndcg_at_3
            value: 52.729000000000006
          - type: ndcg_at_5
            value: 55.696999999999996
          - type: precision_at_1
            value: 41.623
          - type: precision_at_10
            value: 7.692
          - type: precision_at_100
            value: 0.927
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 20.162
          - type: precision_at_5
            value: 13.572000000000001
          - type: recall_at_1
            value: 41.57
          - type: recall_at_10
            value: 76.185
          - type: recall_at_100
            value: 91.728
          - type: recall_at_1000
            value: 99.895
          - type: recall_at_3
            value: 60.27400000000001
          - type: recall_at_5
            value: 67.46600000000001
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 21.071
          - type: map_at_10
            value: 65.093
          - type: map_at_100
            value: 69.097
          - type: map_at_1000
            value: 69.172
          - type: map_at_3
            value: 44.568000000000005
          - type: map_at_5
            value: 56.016999999999996
          - type: mrr_at_1
            value: 76.35
          - type: mrr_at_10
            value: 83.721
          - type: mrr_at_100
            value: 83.899
          - type: mrr_at_1000
            value: 83.904
          - type: mrr_at_3
            value: 82.958
          - type: mrr_at_5
            value: 83.488
          - type: ndcg_at_1
            value: 76.35
          - type: ndcg_at_10
            value: 75.05199999999999
          - type: ndcg_at_100
            value: 80.596
          - type: ndcg_at_1000
            value: 81.394
          - type: ndcg_at_3
            value: 73.298
          - type: ndcg_at_5
            value: 72.149
          - type: precision_at_1
            value: 76.35
          - type: precision_at_10
            value: 36.96
          - type: precision_at_100
            value: 4.688
          - type: precision_at_1000
            value: 0.48700000000000004
          - type: precision_at_3
            value: 66.2
          - type: precision_at_5
            value: 55.81
          - type: recall_at_1
            value: 21.071
          - type: recall_at_10
            value: 77.459
          - type: recall_at_100
            value: 94.425
          - type: recall_at_1000
            value: 98.631
          - type: recall_at_3
            value: 48.335
          - type: recall_at_5
            value: 63.227999999999994
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 36.3
          - type: map_at_10
            value: 46.888999999999996
          - type: map_at_100
            value: 47.789
          - type: map_at_1000
            value: 47.827999999999996
          - type: map_at_3
            value: 43.85
          - type: map_at_5
            value: 45.58
          - type: mrr_at_1
            value: 36.3
          - type: mrr_at_10
            value: 46.888999999999996
          - type: mrr_at_100
            value: 47.789
          - type: mrr_at_1000
            value: 47.827999999999996
          - type: mrr_at_3
            value: 43.85
          - type: mrr_at_5
            value: 45.58
          - type: ndcg_at_1
            value: 36.3
          - type: ndcg_at_10
            value: 52.539
          - type: ndcg_at_100
            value: 56.882
          - type: ndcg_at_1000
            value: 57.841
          - type: ndcg_at_3
            value: 46.303
          - type: ndcg_at_5
            value: 49.406
          - type: precision_at_1
            value: 36.3
          - type: precision_at_10
            value: 7.049999999999999
          - type: precision_at_100
            value: 0.907
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 17.8
          - type: precision_at_5
            value: 12.18
          - type: recall_at_1
            value: 36.3
          - type: recall_at_10
            value: 70.5
          - type: recall_at_100
            value: 90.7
          - type: recall_at_1000
            value: 98.1
          - type: recall_at_3
            value: 53.400000000000006
          - type: recall_at_5
            value: 60.9
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: 421605374b29664c5fc098418fe20ada9bd55f8a
        metrics:
          - type: accuracy
            value: 50.927279722970376
          - type: f1
            value: 39.57514582425314
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
        metrics:
          - type: accuracy
            value: 84.93433395872421
          - type: ap
            value: 50.35046267230439
          - type: f1
            value: 78.76452515604298
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
        metrics:
          - type: cos_sim_pearson
            value: 67.40319768112933
          - type: cos_sim_spearman
            value: 74.9867527749418
          - type: euclidean_pearson
            value: 74.08762625643878
          - type: euclidean_spearman
            value: 74.98675720634276
          - type: manhattan_pearson
            value: 73.86303861791671
          - type: manhattan_spearman
            value: 75.0594224188492
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
        metrics:
          - type: map
            value: 18.860945903258536
          - type: mrr
            value: 17.686507936507937
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 49.16
          - type: map_at_10
            value: 57.992
          - type: map_at_100
            value: 58.638
          - type: map_at_1000
            value: 58.67
          - type: map_at_3
            value: 55.71
          - type: map_at_5
            value: 57.04900000000001
          - type: mrr_at_1
            value: 50.989
          - type: mrr_at_10
            value: 58.814
          - type: mrr_at_100
            value: 59.401
          - type: mrr_at_1000
            value: 59.431
          - type: mrr_at_3
            value: 56.726
          - type: mrr_at_5
            value: 57.955
          - type: ndcg_at_1
            value: 50.989
          - type: ndcg_at_10
            value: 62.259
          - type: ndcg_at_100
            value: 65.347
          - type: ndcg_at_1000
            value: 66.231
          - type: ndcg_at_3
            value: 57.78
          - type: ndcg_at_5
            value: 60.09100000000001
          - type: precision_at_1
            value: 50.989
          - type: precision_at_10
            value: 7.9479999999999995
          - type: precision_at_100
            value: 0.951
          - type: precision_at_1000
            value: 0.10200000000000001
          - type: precision_at_3
            value: 22.087
          - type: precision_at_5
            value: 14.479000000000001
          - type: recall_at_1
            value: 49.16
          - type: recall_at_10
            value: 74.792
          - type: recall_at_100
            value: 89.132
          - type: recall_at_1000
            value: 96.13199999999999
          - type: recall_at_3
            value: 62.783
          - type: recall_at_5
            value: 68.26100000000001
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.45796906523202
          - type: f1
            value: 65.97280169222601
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.59717552118359
          - type: f1
            value: 72.46681610207507
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 40.5
          - type: map_at_10
            value: 46.892
          - type: map_at_100
            value: 47.579
          - type: map_at_1000
            value: 47.648
          - type: map_at_3
            value: 45.367000000000004
          - type: map_at_5
            value: 46.182
          - type: mrr_at_1
            value: 40.6
          - type: mrr_at_10
            value: 46.942
          - type: mrr_at_100
            value: 47.629
          - type: mrr_at_1000
            value: 47.698
          - type: mrr_at_3
            value: 45.417
          - type: mrr_at_5
            value: 46.232
          - type: ndcg_at_1
            value: 40.5
          - type: ndcg_at_10
            value: 50.078
          - type: ndcg_at_100
            value: 53.635999999999996
          - type: ndcg_at_1000
            value: 55.696999999999996
          - type: ndcg_at_3
            value: 46.847
          - type: ndcg_at_5
            value: 48.323
          - type: precision_at_1
            value: 40.5
          - type: precision_at_10
            value: 6.02
          - type: precision_at_100
            value: 0.773
          - type: precision_at_1000
            value: 0.094
          - type: precision_at_3
            value: 17.033
          - type: precision_at_5
            value: 10.94
          - type: recall_at_1
            value: 40.5
          - type: recall_at_10
            value: 60.199999999999996
          - type: recall_at_100
            value: 77.3
          - type: recall_at_1000
            value: 94
          - type: recall_at_3
            value: 51.1
          - type: recall_at_5
            value: 54.7
      - task:
          type: Retrieval
        dataset:
          type: Shitao/MLDR
          name: MTEB MultiLongDocRetrieval (zh)
          config: zh
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.000000000000001
          - type: map_at_10
            value: 10.020999999999999
          - type: map_at_100
            value: 10.511
          - type: map_at_1000
            value: 10.595
          - type: map_at_3
            value: 9.042
          - type: map_at_5
            value: 9.654
          - type: mrr_at_1
            value: 6.875000000000001
          - type: mrr_at_10
            value: 9.958
          - type: mrr_at_100
            value: 10.449
          - type: mrr_at_1000
            value: 10.532
          - type: mrr_at_3
            value: 8.979
          - type: mrr_at_5
            value: 9.592
          - type: ndcg_at_1
            value: 7.000000000000001
          - type: ndcg_at_10
            value: 11.651
          - type: ndcg_at_100
            value: 14.580000000000002
          - type: ndcg_at_1000
            value: 17.183
          - type: ndcg_at_3
            value: 9.646
          - type: ndcg_at_5
            value: 10.738
          - type: precision_at_1
            value: 7.000000000000001
          - type: precision_at_10
            value: 1.687
          - type: precision_at_100
            value: 0.319
          - type: precision_at_1000
            value: 0.053
          - type: precision_at_3
            value: 3.7920000000000003
          - type: precision_at_5
            value: 2.8000000000000003
          - type: recall_at_1
            value: 7.000000000000001
          - type: recall_at_10
            value: 16.875
          - type: recall_at_100
            value: 31.874999999999996
          - type: recall_at_1000
            value: 53.25
          - type: recall_at_3
            value: 11.375
          - type: recall_at_5
            value: 14.000000000000002
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
        metrics:
          - type: accuracy
            value: 55.90333333333333
          - type: f1
            value: 55.291185234519546
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: 66e76a618a34d6d565d5538088562851e6daa7ec
        metrics:
          - type: cos_sim_accuracy
            value: 59.01461829994585
          - type: cos_sim_ap
            value: 61.84829541140869
          - type: cos_sim_f1
            value: 67.94150731158605
          - type: cos_sim_precision
            value: 52.674418604651166
          - type: cos_sim_recall
            value: 95.67053854276664
          - type: dot_accuracy
            value: 59.01461829994585
          - type: dot_ap
            value: 61.84829541140869
          - type: dot_f1
            value: 67.94150731158605
          - type: dot_precision
            value: 52.674418604651166
          - type: dot_recall
            value: 95.67053854276664
          - type: euclidean_accuracy
            value: 59.01461829994585
          - type: euclidean_ap
            value: 61.84829541140869
          - type: euclidean_f1
            value: 67.94150731158605
          - type: euclidean_precision
            value: 52.674418604651166
          - type: euclidean_recall
            value: 95.67053854276664
          - type: manhattan_accuracy
            value: 59.06876015159719
          - type: manhattan_ap
            value: 61.91217952354554
          - type: manhattan_f1
            value: 67.89059572873735
          - type: manhattan_precision
            value: 52.613240418118465
          - type: manhattan_recall
            value: 95.67053854276664
          - type: max_accuracy
            value: 59.06876015159719
          - type: max_ap
            value: 61.91217952354554
          - type: max_f1
            value: 67.94150731158605
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: e610f2ebd179a8fda30ae534c3878750a96db120
        metrics:
          - type: accuracy
            value: 82.53
          - type: ap
            value: 77.67591637020448
          - type: f1
            value: 82.39976599130478
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
        metrics:
          - type: cos_sim_pearson
            value: 55.76388035743312
          - type: cos_sim_spearman
            value: 58.34768166139753
          - type: euclidean_pearson
            value: 57.971763429924074
          - type: euclidean_spearman
            value: 58.34750745303424
          - type: manhattan_pearson
            value: 58.044053497280245
          - type: manhattan_spearman
            value: 58.61627719613188
      - task:
          type: PairClassification
        dataset:
          type: paws-x
          name: MTEB PawsX (zh)
          config: zh
          split: test
          revision: 8a04d940a42cd40658986fdd8e3da561533a3646
        metrics:
          - type: cos_sim_accuracy
            value: 75.75
          - type: cos_sim_ap
            value: 78.80617392926526
          - type: cos_sim_f1
            value: 75.92417061611374
          - type: cos_sim_precision
            value: 65.87171052631578
          - type: cos_sim_recall
            value: 89.59731543624162
          - type: dot_accuracy
            value: 75.75
          - type: dot_ap
            value: 78.83768586994135
          - type: dot_f1
            value: 75.92417061611374
          - type: dot_precision
            value: 65.87171052631578
          - type: dot_recall
            value: 89.59731543624162
          - type: euclidean_accuracy
            value: 75.75
          - type: euclidean_ap
            value: 78.80617392926526
          - type: euclidean_f1
            value: 75.92417061611374
          - type: euclidean_precision
            value: 65.87171052631578
          - type: euclidean_recall
            value: 89.59731543624162
          - type: manhattan_accuracy
            value: 75.75
          - type: manhattan_ap
            value: 78.98640478955386
          - type: manhattan_f1
            value: 75.92954990215264
          - type: manhattan_precision
            value: 67.47826086956522
          - type: manhattan_recall
            value: 86.80089485458613
          - type: max_accuracy
            value: 75.75
          - type: max_ap
            value: 78.98640478955386
          - type: max_f1
            value: 75.92954990215264
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
        metrics:
          - type: cos_sim_pearson
            value: 74.40348414238575
          - type: cos_sim_spearman
            value: 71.452270332177
          - type: euclidean_pearson
            value: 72.62509231589097
          - type: euclidean_spearman
            value: 71.45228258458943
          - type: manhattan_pearson
            value: 73.03846856200839
          - type: manhattan_spearman
            value: 71.43673225319574
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 75.38335474357001
          - type: cos_sim_spearman
            value: 74.92262892309807
          - type: euclidean_pearson
            value: 73.93451693251345
          - type: euclidean_spearman
            value: 74.92262892309807
          - type: manhattan_pearson
            value: 74.55911294300788
          - type: manhattan_spearman
            value: 74.89436791272614
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
        metrics:
          - type: cos_sim_pearson
            value: 83.01687361650126
          - type: cos_sim_spearman
            value: 82.74413230806265
          - type: euclidean_pearson
            value: 81.50177295189083
          - type: euclidean_spearman
            value: 82.74413230806265
          - type: manhattan_pearson
            value: 81.90798387028589
          - type: manhattan_spearman
            value: 82.65064251275778
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: 76631901a18387f85eaa53e5450019b87ad58ef9
        metrics:
          - type: map
            value: 66.25459669294304
          - type: mrr
            value: 76.76845224661744
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 22.515
          - type: map_at_10
            value: 63.63999999999999
          - type: map_at_100
            value: 67.67
          - type: map_at_1000
            value: 67.792
          - type: map_at_3
            value: 44.239
          - type: map_at_5
            value: 54.54599999999999
          - type: mrr_at_1
            value: 79.752
          - type: mrr_at_10
            value: 83.525
          - type: mrr_at_100
            value: 83.753
          - type: mrr_at_1000
            value: 83.763
          - type: mrr_at_3
            value: 82.65599999999999
          - type: mrr_at_5
            value: 83.192
          - type: ndcg_at_1
            value: 79.752
          - type: ndcg_at_10
            value: 72.699
          - type: ndcg_at_100
            value: 78.145
          - type: ndcg_at_1000
            value: 79.481
          - type: ndcg_at_3
            value: 74.401
          - type: ndcg_at_5
            value: 72.684
          - type: precision_at_1
            value: 79.752
          - type: precision_at_10
            value: 37.163000000000004
          - type: precision_at_100
            value: 4.769
          - type: precision_at_1000
            value: 0.508
          - type: precision_at_3
            value: 65.67399999999999
          - type: precision_at_5
            value: 55.105000000000004
          - type: recall_at_1
            value: 22.515
          - type: recall_at_10
            value: 71.816
          - type: recall_at_100
            value: 89.442
          - type: recall_at_1000
            value: 96.344
          - type: recall_at_3
            value: 46.208
          - type: recall_at_5
            value: 58.695
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
        metrics:
          - type: accuracy
            value: 55.077999999999996
          - type: f1
            value: 53.2447237349446
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: 5798586b105c0434e4f0fe5e767abe619442cf93
        metrics:
          - type: v_measure
            value: 59.50582115422618
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
        metrics:
          - type: v_measure
            value: 54.71907850412647
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 49.4
          - type: map_at_10
            value: 59.245999999999995
          - type: map_at_100
            value: 59.811
          - type: map_at_1000
            value: 59.836
          - type: map_at_3
            value: 56.733
          - type: map_at_5
            value: 58.348
          - type: mrr_at_1
            value: 49.4
          - type: mrr_at_10
            value: 59.245999999999995
          - type: mrr_at_100
            value: 59.811
          - type: mrr_at_1000
            value: 59.836
          - type: mrr_at_3
            value: 56.733
          - type: mrr_at_5
            value: 58.348
          - type: ndcg_at_1
            value: 49.4
          - type: ndcg_at_10
            value: 64.08
          - type: ndcg_at_100
            value: 67.027
          - type: ndcg_at_1000
            value: 67.697
          - type: ndcg_at_3
            value: 58.995
          - type: ndcg_at_5
            value: 61.891
          - type: precision_at_1
            value: 49.4
          - type: precision_at_10
            value: 7.93
          - type: precision_at_100
            value: 0.935
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 21.833
          - type: precision_at_5
            value: 14.499999999999998
          - type: recall_at_1
            value: 49.4
          - type: recall_at_10
            value: 79.3
          - type: recall_at_100
            value: 93.5
          - type: recall_at_1000
            value: 98.8
          - type: recall_at_3
            value: 65.5
          - type: recall_at_5
            value: 72.5
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: 339287def212450dcaa9df8c22bf93e9980c7023
        metrics:
          - type: accuracy
            value: 81.16
          - type: ap
            value: 60.864524843400616
          - type: f1
            value: 79.41246877404483

ZNV Embedding utilizes a 6B LLM (Large Language Model) for embedding, achieving excellent embedding results.

In a single inference, we used two prompts to extract two different embeddings for a sentence, and then concatenated them.

Model usage method:

  1. Define ZNVEmbeddingModel
import os
from transformers import (
    LlamaForCausalLM,
    LlamaTokenizer, AutoConfig,
)
import torch
import torch.nn.functional as F
import numpy as np


class ZNVEmbeddingModel(torch.nn.Module):
    def __init__(self, model_name_or_path):
        super(ZNVEmbeddingModel, self).__init__()
        self.prompt_prefix = "阅读下文,然后答题\n"
        self.prompt_suffixes = ["\n1.一个字总结上文的意思是:",
                                "\n2.上文深层次的意思是:"]
        self.hidden_size = 4096
        self.model_name_or_path = model_name_or_path
        self.linear_suffixes = torch.nn.ModuleList(
            [torch.nn.Linear(self.hidden_size, self.hidden_size//len(self.prompt_suffixes))
             for _ in range(len(self.prompt_suffixes))])
        self.tokenizer, self.llama = self.load_llama()

        self.tanh = torch.nn.Tanh()
        self.suffixes_ids = []
        self.suffixes_ids_len = []
        self.suffixes_len = 0
        for suffix in self.prompt_suffixes:
            ids = self.tokenizer(suffix, return_tensors="pt")["input_ids"].tolist()[0]
            self.suffixes_ids += ids
            self.suffixes_ids_len.append(len(ids))
            self.suffixes_len += len(ids)

        self.suffixes_ones = torch.ones(self.suffixes_len)
        self.suffixes_ids = torch.tensor(self.suffixes_ids)

        linear_file = os.path.join(model_name_or_path, "linears")
        load_layers = torch.load(linear_file)
        model_state = self.state_dict()
        model_state.update(load_layers)
        self.load_state_dict(model_state, strict=False)

    def load_llama(self):
        llm_path = os.path.join(self.model_name_or_path)
        config = AutoConfig.from_pretrained(llm_path)
        tokenizer = LlamaTokenizer.from_pretrained(self.model_name_or_path)
        tokenizer.padding_side = "left"
        model = LlamaForCausalLM.from_pretrained(
            llm_path,
            config=config,
            low_cpu_mem_usage=True
        )
        model.config.use_cache = False
        return tokenizer, model

    def forward(self, sentences):
        prompts_embeddings = []
        sentences = [self.prompt_prefix + s for s in sentences]
        inputs = self.tokenizer(sentences, max_length=256, padding=True, truncation=True,
                                return_tensors='pt')
        attention_mask = inputs["attention_mask"]
        input_ids = inputs["input_ids"]
        batch_size = len(sentences)
        suffixes_ones = self.suffixes_ones.unsqueeze(0)
        suffixes_ones = suffixes_ones.repeat(batch_size, 1)
        device = next(self.parameters()).device
        attention_mask = torch.cat([attention_mask, suffixes_ones], dim=-1).to(device)

        suffixes_ids = self.suffixes_ids.unsqueeze(0)
        suffixes_ids = suffixes_ids.repeat(batch_size, 1)
        input_ids = torch.cat([input_ids, suffixes_ids], dim=-1).to(device)
        last_hidden_state = self.llama.base_model.base_model(attention_mask=attention_mask, input_ids=input_ids).last_hidden_state
        index = -1
        for i in range(len(self.suffixes_ids_len)):
            embedding = last_hidden_state[:, index, :]
            embedding = self.linear_suffixes[i](embedding)
            prompts_embeddings.append(embedding)
            index -= self.suffixes_ids_len[-i-1]

        output_embedding = torch.cat(prompts_embeddings, dim=-1)
        output_embedding = self.tanh(output_embedding)
        output_embedding = F.normalize(output_embedding, p=2, dim=1)
        return output_embedding

    def encode(self, sentences, batch_size=10, **kwargs):
        size = len(sentences)
        embeddings = None
        handled = 0
        while handled < size:
            tokens = sentences[handled:handled + batch_size]
            output_embeddings = self.forward(tokens)
            result = output_embeddings.cpu().numpy()
            handled += result.shape[0]
            if embeddings is not None:
                embeddings = np.concatenate((embeddings, result), axis=0)
            else:
                embeddings = result
        return embeddings
  1. Use ZNVEmbeddingModel for Embedding.
znv_model = ZNVEmbeddingModel("your_model_path")
znv_model.eval()
with torch.no_grad():
    output = znv_model(["请问你的电话号码是多少?","可以告诉我你的手机号吗?"])
    cos_sim = F.cosine_similarity(output[0],output[1],dim=0)
    print(cos_sim)