🇹🇷

Roberta-Based Language Model Trained on Turkish Scientific Article Abstracts

This model is a powerful natural language processing model trained on Turkish scientific article abstracts. It focuses on scientific content in the Turkish language and excels in tasks related to text comprehension. The model can be used for understanding scientific texts, summarization, and various other natural language processing tasks.

Model Details

  • Data Source: This model is trained on a custom Turkish scientific article summaries dataset. The data was collected from various sources in Turkey, including databases like "trdizin," "yöktez," and "t.k."

  • Dataset Preprocessing: The data underwent preprocessing to facilitate better learning. Texts were segmented into sentences, and improperly divided sentences were cleaned. The texts were processed meticulously.

  • Tokenizer: The model utilizes a BPE (Byte Pair Encoding) tokenizer to process the data effectively, breaking the text into subword tokens.

  • Training Details: The model was trained on a large dataset of Turkish sentences. The training spanned 2M Steps, totaling 3+ days, and the model was built from scratch. No fine-tuning was applied.

Usage

Load transformers library with:

from transformers import AutoTokenizer, AutoModelForMaskedLM
  
tokenizer = AutoTokenizer.from_pretrained("serdarcaglar/roberta-base-turkish-scientific-abstract")
model = AutoModelForMaskedLM.from_pretrained("serdarcaglar/roberta-base-turkish-scientific-abstract")

Fill Mask Usage

from transformers import pipeline

fill_mask = pipeline(
    "fill-mask",
    model="serdarcaglar/roberta-base-turkish-scientific-abstract",
    tokenizer="serdarcaglar/roberta-base-turkish-scientific-abstract"
)

fill_mask("İnterarteriyel seyirli anormal <mask> arter hastaları ne zaman ameliyat edilmeli ve hangi cerrahi teknik kullanılmalıdır?")

[{'score': 0.7180812954902649,
  'token': 6252,
  'token_str': ' koroner',
  'sequence': 'İnterarteriyel seyirli anormal koroner arter hastaları ne zaman ameliyat edilmeli ve hangi cerrahi teknik kullanılmalıdır?'},
 {'score': 0.09322144836187363,
  'token': 9978,
  'token_str': ' pulmoner',
  'sequence': 'İnterarteriyel seyirli anormal pulmoner arter hastaları ne zaman ameliyat edilmeli ve hangi cerrahi teknik kullanılmalıdır?'},
 {'score': 0.03268029913306236,
  'token': 16407,
  'token_str': ' uterin',
  'sequence': 'İnterarteriyel seyirli anormal uterin arter hastaları ne zaman ameliyat edilmeli ve hangi cerrahi teknik kullanılmalıdır?'},
 {'score': 0.012145915068686008,
  'token': 12969,
  'token_str': ' renal',
  'sequence': 'İnterarteriyel seyirli anormal renal arter hastaları ne zaman ameliyat edilmeli ve hangi cerrahi teknik kullanılmalıdır?'},
 {'score': 0.011508156545460224,
  'token': 26256,
  'token_str': ' karotis',
  'sequence': 'İnterarteriyel seyirli anormal karotis arter hastaları ne zaman ameliyat edilmeli ve hangi cerrahi teknik kullanılmalıdır?'}]

Disclaimer

The use of this model is subject to compliance with specific copyright and legal regulations, which are the responsibility of the users. The model owner or provider cannot be held liable for any issues arising from the use of the model.

Contact information

For further information, send an email to [email protected]

Serdar ÇAĞLAR.

Downloads last month
14
Safetensors
Model size
83.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.