metadata
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
model-index:
- name: dit-base-finetuned-brs
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5882352941176471
- name: F1
type: f1
value: 0.631578947368421
dit-base-finetuned-brs
This model is a fine-tuned version of microsoft/dit-base on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 3.7504
- Accuracy: 0.5882
- F1: 0.6316
- Precision (ppv): 0.5455
- Recall (sensitivity): 0.75
- Specificity: 0.4444
- Npv: 0.6667
- Auc: 0.5972
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision (ppv) | Recall (sensitivity) | Specificity | Npv | Auc |
---|---|---|---|---|---|---|---|---|---|---|
0.7296 | 6.25 | 100 | 0.6515 | 0.5294 | 0.5 | 0.5 | 0.5 | 0.5556 | 0.5556 | 0.5278 |
0.6136 | 12.49 | 200 | 0.6160 | 0.6471 | 0.5 | 0.75 | 0.375 | 0.8889 | 0.6154 | 0.6319 |
0.5701 | 18.74 | 300 | 0.6643 | 0.6471 | 0.5714 | 0.6667 | 0.5 | 0.7778 | 0.6364 | 0.6389 |
0.348 | 24.98 | 400 | 1.3046 | 0.5882 | 0.6316 | 0.5455 | 0.75 | 0.4444 | 0.6667 | 0.5972 |
0.7343 | 31.25 | 500 | 1.3682 | 0.5882 | 0.6316 | 0.5455 | 0.75 | 0.4444 | 0.6667 | 0.5972 |
0.4244 | 37.49 | 600 | 2.4365 | 0.5294 | 0.5556 | 0.5 | 0.625 | 0.4444 | 0.5714 | 0.5347 |
0.4067 | 43.74 | 700 | 2.1054 | 0.5882 | 0.5333 | 0.5714 | 0.5 | 0.6667 | 0.6 | 0.5833 |
0.446 | 49.98 | 800 | 3.2303 | 0.5294 | 0.5556 | 0.5 | 0.625 | 0.4444 | 0.5714 | 0.5347 |
0.4791 | 56.25 | 900 | 2.7902 | 0.5294 | 0.5 | 0.5 | 0.5 | 0.5556 | 0.5556 | 0.5278 |
0.3505 | 62.49 | 1000 | 2.9710 | 0.5882 | 0.5882 | 0.5556 | 0.625 | 0.5556 | 0.625 | 0.5903 |
0.0057 | 68.74 | 1100 | 4.3480 | 0.5294 | 0.5556 | 0.5 | 0.625 | 0.4444 | 0.5714 | 0.5347 |
0.3964 | 74.98 | 1200 | 3.3305 | 0.5294 | 0.5 | 0.5 | 0.5 | 0.5556 | 0.5556 | 0.5278 |
0.0253 | 81.25 | 1300 | 3.1798 | 0.5882 | 0.5882 | 0.5556 | 0.625 | 0.5556 | 0.625 | 0.5903 |
0.0585 | 87.49 | 1400 | 4.3246 | 0.5294 | 0.5556 | 0.5 | 0.625 | 0.4444 | 0.5714 | 0.5347 |
0.0917 | 93.74 | 1500 | 3.5914 | 0.5294 | 0.5556 | 0.5 | 0.625 | 0.4444 | 0.5714 | 0.5347 |
0.1333 | 99.98 | 1600 | 3.7504 | 0.5882 | 0.6316 | 0.5455 | 0.75 | 0.4444 | 0.6667 | 0.5972 |
Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1