sergiocannata's picture
update model card README.md
ae165c6
|
raw
history blame
4.32 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
model-index:
  - name: dit-base-finetuned-brs
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5882352941176471
          - name: F1
            type: f1
            value: 0.631578947368421

dit-base-finetuned-brs

This model is a fine-tuned version of microsoft/dit-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7504
  • Accuracy: 0.5882
  • F1: 0.6316
  • Precision (ppv): 0.5455
  • Recall (sensitivity): 0.75
  • Specificity: 0.4444
  • Npv: 0.6667
  • Auc: 0.5972

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision (ppv) Recall (sensitivity) Specificity Npv Auc
0.7296 6.25 100 0.6515 0.5294 0.5 0.5 0.5 0.5556 0.5556 0.5278
0.6136 12.49 200 0.6160 0.6471 0.5 0.75 0.375 0.8889 0.6154 0.6319
0.5701 18.74 300 0.6643 0.6471 0.5714 0.6667 0.5 0.7778 0.6364 0.6389
0.348 24.98 400 1.3046 0.5882 0.6316 0.5455 0.75 0.4444 0.6667 0.5972
0.7343 31.25 500 1.3682 0.5882 0.6316 0.5455 0.75 0.4444 0.6667 0.5972
0.4244 37.49 600 2.4365 0.5294 0.5556 0.5 0.625 0.4444 0.5714 0.5347
0.4067 43.74 700 2.1054 0.5882 0.5333 0.5714 0.5 0.6667 0.6 0.5833
0.446 49.98 800 3.2303 0.5294 0.5556 0.5 0.625 0.4444 0.5714 0.5347
0.4791 56.25 900 2.7902 0.5294 0.5 0.5 0.5 0.5556 0.5556 0.5278
0.3505 62.49 1000 2.9710 0.5882 0.5882 0.5556 0.625 0.5556 0.625 0.5903
0.0057 68.74 1100 4.3480 0.5294 0.5556 0.5 0.625 0.4444 0.5714 0.5347
0.3964 74.98 1200 3.3305 0.5294 0.5 0.5 0.5 0.5556 0.5556 0.5278
0.0253 81.25 1300 3.1798 0.5882 0.5882 0.5556 0.625 0.5556 0.625 0.5903
0.0585 87.49 1400 4.3246 0.5294 0.5556 0.5 0.625 0.4444 0.5714 0.5347
0.0917 93.74 1500 3.5914 0.5294 0.5556 0.5 0.625 0.4444 0.5714 0.5347
0.1333 99.98 1600 3.7504 0.5882 0.6316 0.5455 0.75 0.4444 0.6667 0.5972

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1