File size: 7,697 Bytes
57bfa7b 1dc8f04 22db51c 1dc8f04 57bfa7b 22db51c 57bfa7b acb9227 1dc8f04 22db51c 1dc8f04 57bfa7b b6f25aa 57bfa7b 23ea87b 37c251f 27219f5 e2919a6 27219f5 57bfa7b 37c251f 27219f5 23ea87b 37c251f cec8363 57bfa7b 22db51c 57bfa7b 22db51c 57bfa7b 37c251f 57bfa7b 22db51c 1dc8f04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
---
language:
- en
license: cc-by-nc-nd-4.0
library_name: transformers
tags:
- moe
- merge
- medical
- mergekit
datasets:
- medmcqa
- cognitivecomputations/samantha-data
- jondurbin/bagel-v0.3
base_model:
- sethuiyer/Dr_Samantha_7b_mistral
- fblgit/UNA-TheBeagle-7b-v1
pipeline_tag: text-generation
model-index:
- name: MedleyMD
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 66.47
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.06
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.1
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.46
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.27
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.99
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD
name: Open LLM Leaderboard
---
# MedleyMD
![logo](https://huggingface.co/sethuiyer/MedleyMD/resolve/main/logo.webp)
MedleyMD is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [sethuiyer/Dr_Samantha_7b_mistral](https://huggingface.co/sethuiyer/Dr_Samantha_7b_mistral)
* [fblgit/UNA-TheBeagle-7b-v1](https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1)
These models were chosen because `fblgit/UNA-TheBeagle-7b-v1` has excellent performance for a 7B parameter model and Dr.Samantha has capabilities of a medical knowledge-focused model (trained on USMLE databases and doctor-patient interactions) with the philosophical, psychological, and relational understanding, scoring 68.82% in topics related to clinical domain and psychology.
## Benchmark
On a synthetic benchmark of 35 medical diagnosis questions generated by GPT-4, GPT-4 also being an evaluator, MedleyMD scored **96.25/100**.
Nous Benchmark numbers shall be available soon.
## 🧩 Configuration
```yaml
base_model: OpenPipe/mistral-ft-optimized-1227
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: sethuiyer/Dr_Samantha_7b_mistral
positive_prompts: ["differential diagnosis", "Clinical Knowledge", "Medical Genetics", "Human Aging", "Human Sexuality", "College Medicine", "Anatomy", "College Biology", "High School Biology", "Professional Medicine", "Nutrition", "High School Psychology", "Professional Psychology", "Virology"]
- source_model: fblgit/UNA-TheBeagle-7b-v1
positive_prompts: ["How do you", "Explain the concept of", "Give an overview of", "Compare and contrast between", "Provide information about", "Help me understand", "Summarize", "Make a recommendation on", "chat", "math", "reason", "mathematics", "solve", "count", "python", "javascript", "programming", "algorithm", "tell me", "assistant"]
```
## GGUF
1. [medleymd.Q4_K_M](https://huggingface.co/sethuiyer/MedleyMD-GGUF/resolve/main/medleymd.Q4_K_M.gguf) [7.2GB]
2. [medleymd.Q5_K_M](https://huggingface.co/sethuiyer/MedleyMD-GGUF/resolve/main/medleymd.Q5_K_M.gguf) [9.13GB]
## Ollama
MedleyMD can be used in ollama by running```ollama run stuehieyr/medleymd``` in your terminal.
If you have limited computing resources, check out this [video](https://www.youtube.com/watch?v=Qa1h7ygwQq8) to learn how to run it on
a Google Colab backend.
## Prompt format:
This model uses ChatML prompt format.
```
<|im_start|>system
You are Medley, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "sethuiyer/MedleyMD"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.bfloat16, "load_in_4bit": True},
)
generation_kwargs = {
"max_new_tokens": 512,
"do_sample": True,
"temperature": 0.7,
"top_k": 50,
"top_p": 95,
}
messages = [{"role":"system", "content":"You are an helpful AI assistant. Please use </s> when you want to end the answer."},
{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, **generation_kwargs)
print(outputs[0]["generated_text"])
```
```text
A Mixture of Experts (Mixout) is a neural network architecture that combines the strengths of multiple expert networks to make a more accurate and robust prediction.
It is composed of a topmost gating network that assigns weights to each expert network based on their performance on past input samples.
The expert networks are trained independently, and the gating network learns to choose the best combination of these experts to make the final prediction.
Mixout demonstrates a stronger ability to handle complex data distributions and is more efficient in terms of training time and memory usage compared to a
traditional ensemble approach.
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__MedleyMD)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.89|
|AI2 Reasoning Challenge (25-Shot)|66.47|
|HellaSwag (10-Shot) |86.06|
|MMLU (5-Shot) |65.10|
|TruthfulQA (0-shot) |52.46|
|Winogrande (5-shot) |80.27|
|GSM8k (5-shot) |68.99|
|