Llama-3.1-Korean-8B-Instruct

Llama-3.1-Korean-8B-Instruct is finetuned from Meta-Llama-3.1:

πŸ’» Usage for Transformers

Use with transformers Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via pip install --upgrade transformers.

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "sh2orc/Llama-3.1-Korean-8B-Instruct"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=2048, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

πŸ’» Usage for VLLM

Use with transformers Starting with vllm onward, you can run conversational inference using the vLLM pipeline abstraction with the gen() function. Make sure to update your vllm installation via pip install --upgrade vllm.

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer, pipeline

BASE_MODEL = "sh2orc/Llama-3.1-Korean-8B-Instruct"

llm = LLM(model=BASE_MODEL)

tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'right'

def gen(instruction):
    messages = [
        {
          "role": "system",
          "content": "당신은 ν›Œλ₯­ν•œ AI λΉ„μ„œμž…λ‹ˆλ‹€. λ‹΅λ³€ 쀑 λͺ¨λ₯΄λŠ” λ‚΄μš©μ΄λ©΄ λͺ¨λ₯Έλ‹€κ³  λ‹΅ν•΄μ£Όμ„Έμš”. You are a great AI assistant. If you don't know about a user question, please tell me you don't know about it."
        },
        {
          "role": "user",
          "content": instruction
        }, 
    ]
    
    prompt_message = tokenizer.apply_chat_template(
            messages, 
            tokenize=False, 
            add_generation_prompt=True,
    )
    
    eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
    
    outputs = llm.generate(prompt_message, SamplingParams(
        stop_token_ids=eos_token_id, 
        temperature=0.3, 
        top_p=0.9,
        frequency_penalty=1.3,
        max_tokens=4096))
    
    for output in outputs:
        propt = output.prompt
        generated_text = output.outputs[0].text
        print(generated_text)

Q&A

Q. λ‚˜ν˜œμ„μ— λŒ€ν•΄μ„œ μ•Œλ €μ£Όμ„Έμš”.
A. λ‚˜ν˜œμ„(1896λ…„ 10μ›” 28일 ~ 1948λ…„ 2μ›”)은 ν•œκ΅­μ˜ μ—¬μ„± λ¬Έν•™κ°€μ΄μž μ‚¬νšŒμš΄λ™κ°€λ‘œ, μΌμ œκ°•μ κΈ°μ˜ λŒ€ν‘œμ μΈ μ—¬μ„±μ£Όμ˜ 문인으둜 μ•Œλ €μ Έ μžˆμŠ΅λ‹ˆλ‹€. κ·Έλ…€λŠ” μΌλ³Έμ—μ„œ κ΅μœ‘μ„ λ°›μ•˜μœΌλ©°, 일본의 μ—¬μ„±μ£Όμ˜ μš΄λ™μ— μ°Έμ—¬ν•˜μ˜€μŠ΅λ‹ˆλ‹€. λ˜ν•œ, ν•œκ΅­μ—μ„œλŠ” μ‘°μ„ μ—¬μžκ΅μœ‘ν˜‘νšŒλ₯Ό μ„€λ¦½ν•˜κ³  여학ꡐ 섀립 μš΄λ™μ— μ°Έμ—¬ν•˜μ˜€μŠ΅λ‹ˆλ‹€.

λ‚˜ν˜œμ„μ€ μ‹œμ™€ μ†Œμ„€ λ“± λ‹€μ–‘ν•œ μž₯λ₯΄λ‘œ ν™œλ™ν–ˆμœΌλ©°, κ·Έλ…€μ˜ μž‘ν’ˆλ“€μ€ 주둜 μ—¬μ„±λ“€μ˜ μ‚Άκ³Ό μ‚¬νšŒ 문제λ₯Ό 닀루고 μžˆμŠ΅λ‹ˆλ‹€. κ·Έλ…€μ˜ λŒ€ν‘œμž‘μœΌλ‘œλŠ” 'μ•„λ¦¬λž‘', 'μ†ŒκΈˆ', 'λΉ„λ‘˜κΈ°' 등이 있으며, 이 μ€‘μ—μ„œλ„ 특히 'μ•„λ¦¬λž‘'은 κ·Έλ…€κ°€ μ“΄ κ°€μž₯ 유λͺ…ν•œ μž‘ν’ˆμž…λ‹ˆλ‹€.

λ˜ν•œ λ‚˜ν˜œμ„μ€ 일제 강점기에 ν™œλ™ν–ˆλ˜ μ •μΉ˜μ  μΈλ¬Όλ‘œμ„œλ„ 유λͺ…ν•©λ‹ˆλ‹€. κ·Έλ…€λŠ” λ…λ¦½μš΄λ™μ„ μ§€μ§€ν•˜λ©° 항일 μš΄λ™μ— μ°Έμ—¬ν•˜μ˜€κ³ , 이후 λŒ€ν•œλ―Όκ΅­ μ •λΆ€ 수립 후에도 μ •μΉ˜μ  ν™œλ™μ„ κ³„μ†ν–ˆμŠ΅λ‹ˆλ‹€.

κ·Έλ…€μ˜ 생애와 업적은 ν•œκ΅­ ν˜„λŒ€λ¬Έν•™ε²μ™€ μ—¬μ„±μ£Όμ˜ μ—­μ‚¬μ—μ„œ μ€‘μš”ν•œ 역할을 ν•œ κ²ƒμœΌλ‘œ ν‰κ°€λ©λ‹ˆλ‹€.

Q. 2μ°¨ μ„Έκ³„λŒ€μ „μ— λŒ€ν•΄μ„œ μ•Œλ €μ€˜
A. 2μ°¨ 세계 λŒ€μ „μ€ 1939λ…„λΆ€ν„° 1945λ…„κΉŒμ§€ μΌμ–΄λ‚œ λŒ€κ·œλͺ¨ ꡰ사 좩돌둜, 제1μ°¨ 세계 λŒ€μ „ 이후에 λ°œμƒν•œ 졜초의 μ „κ΅¬μ „μ΄μ—ˆμŠ΅λ‹ˆλ‹€. 이 μ „μŸμ€ 독일과 μ΄νƒˆλ¦¬μ•„κ°€ μ£Όλ„ν•˜μ—¬ λ°œλ°œν–ˆκ³ , μ†Œλ ¨κ³Ό 미ꡭ이 μ£Όμš” μ—°ν•©κ΅­μœΌλ‘œ μ°Έμ—¬ν–ˆμŠ΅λ‹ˆλ‹€. 일본 λ˜ν•œ μ€‘λ¦½κ΅­μ΄μ—ˆμ§€λ§Œ, λ…μΌκ³Όμ˜ 동맹 관계λ₯Ό λ§Ίκ³  λ§Œμ£Όμ™€ 쀑ꡭ을 μΉ¨λž΅ν•˜μ˜€μŠ΅λ‹ˆλ‹€.

독일은 λ‚˜μΉ˜λ‹Ήμ˜ μ•„λŒν”„ νžˆν‹€λŸ¬κ°€ μ§‘κΆŒν•˜λ©΄μ„œ ν™•μž₯ 정책을 μΆ”μ§„ν•˜μ—¬ μ˜€μŠ€νŠΈλ¦¬μ•„λ₯Ό ν•©λ³‘ν•˜κ³  μ²΄μ½”μŠ¬λ‘œλ°”ν‚€μ•„λ₯Ό λΆ„ν• ν•˜μ˜€μŠ΅λ‹ˆλ‹€. ν”„λž‘μŠ€λŠ” ν΄λž€λ“œλ₯Ό μΉ¨κ³΅ν–ˆμ§€λ§Œ νŒ¨λ°°ν–ˆκ³ , μ˜κ΅­λ„ λ…μΌμ—κ²Œ ν•­λ³΅ν–ˆμŠ΅λ‹ˆλ‹€. κ·ΈλŸ¬λ‚˜ μ˜κ΅­μ—μ„œλŠ” μœˆμŠ€ν„΄ 처칠 총리가 μ§‘κΆŒν•˜λ©΄μ„œ μ €ν•­ μš΄λ™μ΄ ν™œλ°œν•΄μ‘Œκ³ , λ―Έκ΅­μ—μ„œλ„ ν”„λž­ν΄λ¦° D 루즈벨트 λŒ€ν†΅λ Ήμ΄ μž¬μ„ λ˜λ©΄μ„œ μ „μŸμ— μ°Έμ—¬ν•˜κΈ° μ‹œμž‘ν–ˆμŠ΅λ‹ˆλ‹€.

μ†Œλ ¨μ€ μŠ€νƒˆλ¦° 지도 μ•„λž˜μ—μ„œ 독립적인 외ꡐ 정책을 μΆ”μ§„ν•˜λ©° 일본과의 동맹 관계λ₯Ό λ§Ίμ—ˆμ§€λ§Œ, λ‚˜μΉ˜ λ…μΌκ³Όμ˜ μ „μŸμ—μ„œ μŠΉλ¦¬ν•˜λ©΄μ„œ 유럽 전역에 영ν–₯λ ₯을 ν–‰μ‚¬ν•˜κ²Œ λ©λ‹ˆλ‹€. λ―Έκ΅­κ³Ό μ˜κ΅­μ—μ„œλŠ” λŒ€μ„œμ–‘ ν•΄μ „μ—μ„œ μŠΉλ¦¬ν•˜λ©° 유럽 λ³Έν† λ‘œ μ§„κ²©ν–ˆκ³ , μ†Œλ ¨ μ—­μ‹œ λ² λ₯΄μ‹ -λΌνŒŒμ˜ˆν”„ μ„ κΉŒμ§€ μ§„κ²©ν•©λ‹ˆλ‹€.

일본은 쀑ꡭ 본토와 ν•œκ΅­ λ°˜λ„μ—λ„ 영ν–₯λ ₯을 ν–‰μ‚¬ν•˜λ©° νƒœν‰μ–‘ μ§€μ—­μ—μ„œμ˜ 영유ꢌ ν™•λŒ€λ₯Ό λͺ©ν‘œλ‘œ μ‚Όμ•˜μŠ΅λ‹ˆλ‹€. κ·ΈλŸ¬λ‚˜ λ―Έκ΅° 곡슡으둜 인해 상λ₯™ μž‘μ „ μ‹€νŒ¨μ™€ ν•¨κ»˜ νŒ¨λ°°ν•˜κ²Œ λ©λ‹ˆλ‹€.

2μ°¨ 세계 λŒ€μ „μ—λŠ” λ§Žμ€ ꡭ가듀이 μ°Έμ „ν–ˆμœΌλ©°, μ‚¬λ§μž μˆ˜λŠ” μ•½ 50~80백만 λͺ… μ •λ„μ˜€μŠ΅λ‹ˆλ‹€. 이 μ „μŸμœΌλ‘œ 인해 μœ μ—” 기ꡬ가 μ„€λ¦½λ˜μ—ˆκ³ , ꡭ제 μ—°ν•©μ΄λΌλŠ” μ΄λ¦„μœΌλ‘œ μ•Œλ €μ Έ μžˆμŠ΅λ‹ˆλ‹€.

λ¬Όλ‘  μ΄κ²ƒλ§Œ μ•Œκ³  μžˆμ§€ μ•Šμ„ μˆ˜λ„ μžˆμœΌλ‹ˆ 더 μžμ„Ένžˆ μ•Œκ³  μ‹Άλ‹€λ©΄ μΆ”κ°€ μ§ˆλ¬Έμ΄λ‚˜ 자료 μš”μ²­ λΆ€νƒλ“œλ¦½λ‹ˆλ‹€!

Q. λˆμ„ λΉŒλ ΈλŠ”λ°, λˆμ„ μ•ˆ 갚으면?
A. λˆμ„ λΉŒλ ΈλŠ”λ°, λˆμ„ μ•ˆ 갚으면 큰 λ¬Έμ œκ°€ λ°œμƒν•  수 μžˆμŠ΅λ‹ˆλ‹€. λ¨Όμ €, 빌린 μ‚¬λžŒκ³Ό λŒ€μΆœν•œ μ‚¬λžŒ 사이에 계약이 λ§Ίμ–΄μ Έμ•Ό ν•©λ‹ˆλ‹€. 이 계약은 λ²•μ μœΌλ‘œ μΈμ •λ˜λ©°, λŒ€μΆœκΈˆμ•‘κ³Ό 이자율, 갚기 κΈ°κ°„ 등이 μ •ν•΄μ Έ μžˆμŠ΅λ‹ˆλ‹€.

λŒ€μΆœκΈˆμ„ λ―Έλ‚©ν•˜λ©΄ λ‹€μŒκ³Ό 같은 κ²°κ³Όκ°€ λ°œμƒν•  수 μžˆμŠ΅λ‹ˆλ‹€:

  1. 이자 λΆ€κ³Ό: λ―Έλ‚©λœ κΈˆμ•‘μ— λŒ€ν•œ μ΄μžκ°€ λΆ€κ³Όλ©λ‹ˆλ‹€. μ΄μžλŠ” μ›κΈˆμ˜ 일정 λΉ„μœ¨λ‘œ κ³„μ‚°λ©λ‹ˆλ‹€.
  2. μ±„λ¬΄λΆˆμ΄ν–‰: λŒ€μΆœμž(빌린 μ‚¬λžŒ)λŠ” μ±„λ¬΄λΆˆμ΄ν–‰μ£„λ₯Ό λ²”ν•˜κ²Œ λ©λ‹ˆλ‹€.
  3. 법적 쑰치: μ±„κΆŒμžλŠ” λ²•μ›μ—μ„œ μ†Œμ†‘μ„ μ œκΈ°ν•˜μ—¬ 원상볡ꡬλ₯Ό μ²­κ΅¬ν•˜κ±°λ‚˜ λ³€μ œμ²­κ΅¬λ₯Ό ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
  4. μ‹ μš©λ„ ν•˜λ½: μ‹ μš©ν‰κ°€λ₯Ό λ°›μ•˜λ˜ κ²½μš°μ—λŠ” μ‹ μš©λ„κ°€ ν•˜λ½ν•˜κ³  κΈˆμœ΅κΈ°κ΄€μ—μ„œλŠ” μ°¨μž…μ΄λ‚˜ μΉ΄λ“œ λ°œκΈ‰ 등에 어렀움을 κ²ͺ게 λ©λ‹ˆλ‹€.

λ”°λΌμ„œ, 빌린 λˆμ€ λ°˜λ“œμ‹œ 지급해야 ν•©λ‹ˆλ‹€. λ§Œμ•½ 지급 λΆˆκ°€λŠ₯ν•œ κ²½μš°μ—λŠ” μ¦‰μ‹œ ν†΅λ³΄ν•˜κ³  ν˜‘μ˜ν•˜μ—¬ ν•΄κ²°ν•΄μ•Ό ν•©λ‹ˆλ‹€.

ν•˜μ§€λ§Œ λͺ¨λ“  μƒν™©μ—μ„œ κ°€λŠ₯ν•œ 것은 μ•„λ‹ˆλ―€λ‘œ 전문적인 μƒλ‹΄μ΄λ‚˜ 법λ₯ μƒλ‹΄ 등을 λ°›μ•„λ³΄λŠ” 것이 μ’‹μŠ΅λ‹ˆλ‹€.

ν˜Ήμ‹œ 더 κΆκΈˆν•˜μ‹  점 μžˆμœΌμ‹ κ°€μš”?

Q. κ±΄κ°•ν•˜κ²Œ μ‚΄κΈ° μœ„ν•œ μžμ„Έ
A. κ±΄κ°•ν•˜κ²Œ μ‚΄κΈ° μœ„ν•œ μžμ„ΈλŠ” μ—¬λŸ¬ 가지 μš”μ†Œκ°€ μžˆμŠ΅λ‹ˆλ‹€. λ¨Όμ €, 쒋은 μžμ„Έλ₯Ό μœ μ§€ν•˜λŠ” 것이 μ€‘μš”ν•©λ‹ˆλ‹€. 쒋은 μžμ„Έλž€ κ°€μŠ΄μ„ 펴고 μ–΄κΉ¨λ₯Ό νŽΈν•˜κ²Œ ν•˜λŠ” κ²ƒμž…λ‹ˆλ‹€. μ΄λ•Œ, ν—ˆλ¦¬μ™€ μ—‰λ©μ΄λŠ” μžμ—°μŠ€λŸ½κ²Œ ꡬ뢀렀야 ν•©λ‹ˆλ‹€.

λ˜ν•œ, 앉아 μžˆμ„ λ•ŒλŠ” 발이 ν‰ν‰ν•˜κ²Œ 땅에 λ‹Ώμ•„μ•Ό ν•©λ‹ˆλ‹€. 그리고 μ„œ μžˆμ„ λ•ŒλŠ” κ· ν˜•μ„ 작고 μžˆμ–΄μ•Ό ν•©λ‹ˆλ‹€.

λ‹€μŒμœΌλ‘œ, μš΄λ™μ€ ν•„μˆ˜μ μž…λ‹ˆλ‹€. 맀일 30λΆ„ μ •λ„μ˜ λ‹¨μˆœν•œ μš΄λ™μ„ ν•˜κ±°λ‚˜ μ‘°κΉ…μ΄λ‚˜ 수영 등에 μ°Έμ—¬ν•˜λ©΄ μ’‹μŠ΅λ‹ˆλ‹€. λ˜ν•œ, κ·œμΉ™μ μΈ 식사와 μΆ©λΆ„ν•œ μˆ˜λ©΄λ„ μ€‘μš”ν•©λ‹ˆλ‹€.

λ§ˆμ§€λ§‰μœΌλ‘œ 슀트레슀 관리가 ν•„μš”ν•©λ‹ˆλ‹€. 슀트레슀 관리 λ°©λ²•μ—λŠ” λͺ…μƒμ΄λ‚˜ μ‹¬ν˜Έν‘λ²• 등이 μžˆμŠ΅λ‹ˆλ‹€.

λ”°λΌμ„œ κ±΄κ°•ν•˜κ³  ν–‰λ³΅ν•œ 삢을 μ‚΄κΈ° μœ„ν•΄μ„œλŠ” 쒋은 μžμ„Έλ₯Ό μœ μ§€ν•˜κ³  κ·œμΉ™μ μΈ μƒν™œμŠ΅κ΄€κ³Ό μš΄λ™ 등을 톡해 건강함과 행볡함을 좔ꡬ해야 ν•©λ‹ˆλ‹€.

κ·ΈλŸ¬λ‚˜ λͺ¨λ“  μ‚¬λžŒλ§ˆλ‹€ λ‹€λ₯΄λ―€λ‘œ κ°œμΈλ³„λ‘œ λ§žμΆ€ν˜• μƒν™œμŠ΅κ΄€κ³Ό μš΄λ™ κ³„νšμ΄ ν•„μš”ν•  μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.

λ˜ν•œ μ˜μ‚¬λŠ” μ „λ¬Έκ°€λ‘œμ„œ μ •ν™•ν•˜κ³  μ΅œμ‹  정보λ₯Ό μ œκ³΅ν•  수 μžˆμœΌλ―€λ‘œ μ˜μ‚¬μ˜ 상담도 μΆ”μ²œλ©λ‹ˆλ‹€.

κΆκΈˆν•˜μ‹  점은 μ–Έμ œλ“ μ§€ λ¬Όμ–΄λ³΄μ„Έμš”!

Q. κ±΄κ°•ν•˜κ²Œ μ‚΄κΈ° μœ„ν•΄μ„œλŠ” κ· ν˜• 작힌 식단을 μœ μ§€ν•˜κ³ , κ·œμΉ™μ μΈ μš΄λ™μ„ ν•˜λŠ” 것이 μ€‘μš”ν•©λ‹ˆλ‹€. μΆ©λΆ„ν•œ μˆ˜λ©΄μ„ μ·¨ν•˜κ³ , 슀트레슀λ₯Ό κ΄€λ¦¬ν•˜λŠ” 것도 건강에 큰 영ν–₯을 λ―ΈμΉ©λ‹ˆλ‹€. 정기적인 건강 검진을 톡해 μ§ˆλ³‘μ„ 쑰기에 λ°œκ²¬ν•˜κ³ , κ΄€λ¦¬ν•˜λŠ” 것도 μ€‘μš”ν•©λ‹ˆλ‹€. 이것을 μ˜μ–΄λ‘œ λ²ˆμ—­
A. κ±΄κ°•ν•˜κ²Œ μ‚΄κΈ° μœ„ν•΄μ„œλŠ” κ· ν˜• 작힌 식단을 μœ μ§€ν•˜κ³ , κ·œμΉ™μ μΈ μš΄λ™μ„ ν•˜λŠ” 것이 μ€‘μš”ν•©λ‹ˆλ‹€. μΆ©λΆ„ν•œ μˆ˜λ©΄μ„ μ·¨ν•˜κ³ , 슀트레슀λ₯Ό κ΄€λ¦¬ν•˜λŠ” 것도 건강에 큰 영ν–₯을 λ―ΈμΉ©λ‹ˆλ‹€. 정기적인 건강 검진을 톡해 μ§ˆλ³‘μ„ 쑰기에 λ°œκ²¬ν•˜κ³ , κ΄€λ¦¬ν•˜λŠ” 것도 μ€‘μš”ν•©λ‹ˆλ‹€.

μ˜μ–΄λ‘œ λ²ˆμ—­ν•˜λ©΄ λ‹€μŒκ³Ό κ°™μŠ΅λ‹ˆλ‹€:

To live a healthy life, it is essential to maintain a balanced diet and regular exercise. Getting enough sleep and managing stress also have a significant impact on health. Regular health check-ups are also important to detect and manage diseases early on.

λ˜ν•œ μ˜μ–΄λ‘œ λ²ˆμ—­λœ λ¬Έμž₯은 λ‹€μŒκ³Ό κ°™μŠ΅λ‹ˆλ‹€:

Maintaining a balanced diet and regular exercise is crucial for living a healthy life. Getting sufficient sleep and managing stress also play significant roles in maintaining good health. Regular health check-ups are vital for detecting diseases at an early stage so that they can be managed effectively.

또 λ‹€λ₯Έ μ˜μ–΄λ‘œ λ²ˆμ—­λœ λ¬Έμž₯은 λ‹€μŒκ³Ό κ°™μŠ΅λ‹ˆλ‹€:

A well-balanced diet and regular physical activity are key components of maintaining good health. Adequate sleep and stress management are equally important factors in keeping the body healthy. Regular medical check-ups help identify potential issues before they become serious problems.

이 외에도 μ—¬λŸ¬ 가지 λ°©λ²•μœΌλ‘œ μ˜μ–΄λ‘œ λ²ˆμ—­ν•  수 μžˆμŠ΅λ‹ˆλ‹€.

Q. λ‹€μŒμ„ μ˜μ–΄λ‘œ λ²ˆμ—­ν•΄μ€˜: μΉ΄λ“œ μ—°μ²΄λŠ” 금육 κ±°λž˜μ— 큰 λΆˆμ΄μ΅μ„ μ΄ˆλž˜ν•  수 μžˆμŠ΅λ‹ˆλ‹€. 연체가 λ°œμƒν•˜λ©΄ μ‹ μš©λ“±κΈ‰μ΄ 크게 ν•˜λ½ν•˜κ²Œ 되며, μ΄λŠ” 이후 λŒ€μΆœ μ‹ μ²­ μ‹œ κ±°μ ˆλ‹Ήν•˜κ±°λ‚˜ λΆˆλ¦¬ν•œ 쑰건을 λ°›λŠ” κ²°κ³Όλ₯Ό μ΄ˆλž˜ν•  수 μžˆμŠ΅λ‹ˆλ‹€. λ˜ν•œ, μΉ΄λ“œμ‚¬λ‘œλΆ€ν„° 고금리 λŒ€μΆœμ΄λ‚˜ 기타 λΆ€μ±„μ˜ μ œμ•ˆμ„ 받을 κ°€λŠ₯성이 λ†’μŠ΅λ‹ˆλ‹€.
A. μΉ΄λ“œ μ—°μ²΄λŠ” 금육 κ±°λž˜μ— 큰 λΆˆμ΄μ΅μ„ μ΄ˆλž˜ν•  수 μžˆμŠ΅λ‹ˆλ‹€. 연체가 λ°œμƒν•˜λ©΄ μ‹ μš©λ“±κΈ‰μ΄ 크게 ν•˜λ½ν•˜κ²Œ 되며, μ΄λŠ” 이후 λŒ€μΆœ μ‹ μ²­ μ‹œ κ±°μ ˆλ‹Ήν•˜κ±°λ‚˜ λΆˆλ¦¬ν•œ 쑰건을 λ°›λŠ” κ²°κ³Όλ₯Ό μ΄ˆλž˜ν•  수 μžˆμŠ΅λ‹ˆλ‹€. λ˜ν•œ, μΉ΄λ“œμ‚¬λ‘œλΆ€ν„° 고금리 λŒ€μΆœμ΄λ‚˜ 기타 λΆ€μ±„μ˜ μ œμ•ˆμ„ 받을 κ°€λŠ₯성이 λ†’μŠ΅λ‹ˆλ‹€.

(원문 λ²ˆμ—­)

Overdue credit card payments can cause significant financial inconvenience. If a payment is overdue, the credit score will drop significantly, which may result in rejection or unfavorable terms when applying for loans later on. Additionally, there is a higher likelihood of receiving high-interest loan or other debt proposals from the card issuer.

Downloads last month
4,567
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sh2orc/Llama-3.1-Korean-8B-Instruct

Finetuned
(708)
this model
Finetunes
6 models
Quantizations
14 models

Spaces using sh2orc/Llama-3.1-Korean-8B-Instruct 6