Mixolar-4x7b
This model is a Mixure of Experts (MoE) made with mergekit (mixtral branch). It uses the following base models:
- kyujinpy/Sakura-SOLAR-Instruct
- jeonsworld/CarbonVillain-en-10.7B-v1
- rishiraj/meow
- kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2
🧩 Configuration
base_model: kyujinpy/Sakura-SOLAR-Instruct
gate_mode: hidden
experts:
- source_model: kyujinpy/Sakura-SOLAR-Instruct
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
negative_prompts:
- "mathematics"
- "reasoning"
- source_model: jeonsworld/CarbonVillain-en-10.7B-v1
positive_prompts:
- "write"
- "AI"
- "text"
- "paragraph"
negative_prompts:
- "mathematics"
- "reasoning"
- source_model: rishiraj/meow
positive_prompts:
- "chat"
- "say"
- "what"
negative_prompts:
- "mathematics"
- "reasoning"
- source_model: kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2
positive_prompts:
- "reason"
- "math"
- "mathematics"
- "solve"
- "count"
negative_prompts:
- "chat"
- "assistant"
- "storywriting"
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Mixolar-4x7b"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 74.18 |
AI2 Reasoning Challenge (25-Shot) | 71.08 |
HellaSwag (10-Shot) | 88.44 |
MMLU (5-Shot) | 66.29 |
TruthfulQA (0-shot) | 71.81 |
Winogrande (5-shot) | 83.58 |
GSM8k (5-shot) | 63.91 |
- Downloads last month
- 3,189
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for shadowml/Mixolar-4x7b
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard71.080
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard88.440
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard66.290
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard71.810
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard83.580
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard63.910